

Contemporary synthetic strategies in organofluorine chemistry

Robert Britton¹, Veronique Gouverneur², Jin-Hong Lin³, Michael Meanwell¹, Chuanfa Ni^{1b}³, Gabriele Pupo^{1b}², Ji-Chang Xiao^{1b}³ and Jinbo Hu^{1b}³✉

Abstract | Fluorinated molecules have a wide range of applications and are used as medicines, agrochemicals and refrigerants and in smartphone liquid crystal displays, photovoltaic solar cells, Teflon tapes and the coatings of textiles and buildings. Fluorination and fluoroalkylation — incorporation of a trifluoromethyl, difluoromethyl or monofluoromethyl group — are the major strategies used for the construction of carbon–fluorine bonds and fluorinated carbon–carbon bonds, respectively. The past two decades have witnessed a rapid growth in fluorination and fluoroalkylation methods thanks to the development of new reagents and catalysts. This Primer aims to provide an overview of state-of-the-art strategies in fluorination, trifluoromethylation, difluoromethylation and monofluoromethylation, with an emphasis on using C–H functionalization, although other strategies for fluorination and fluoroalkylation are also discussed. Further landmark achievements are expected in the fields of fluorination and fluoroalkylation as organofluorine compounds are used increasingly in everyday applications.

Heteroelement

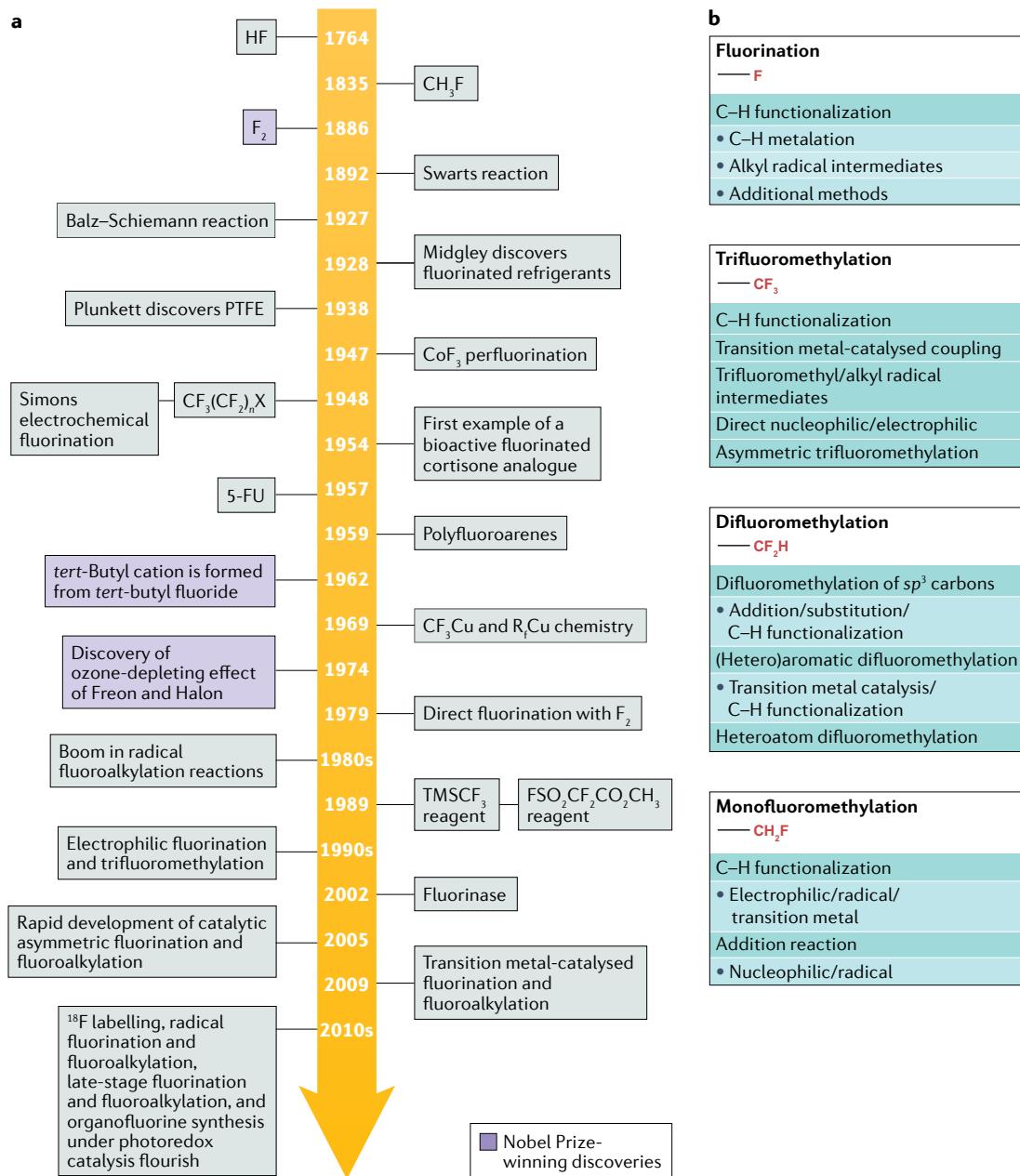
Any element in the periodic table that is not carbon or hydrogen.

Positron emission tomography

(PET). A functional imaging technique that uses radiotracers to visualize and measure changes in metabolic processes, and in other physiological activities.

¹Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada.

²Chemistry Research Laboratory, University of Oxford, Oxford, UK.


³Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.

✉e-mail: jinbohu@sioc.ac.cn
<https://doi.org/10.1038/s43586-021-00042-1>

Fluorine is the most electronegative element in the periodic table and the second most used heteroelement in life science research after nitrogen¹. Approximately 20% of marketed drugs and 50% of agrochemicals registered in the past 20 years are estimated to contain one or more fluorine atoms^{2–7}. Fluorine atoms can be incorporated through fluorination or fluoroalkylation, which introduces a trifluoromethyl (CF₃), difluoromethyl (CF₂H) or monofluoromethyl (CH₂F) group. The incorporation of fluorine atoms into a drug molecule can modulate several important properties including its metabolism, pharmacokinetics and ability to permeate biological tissues; as a result, the pharmaceutical industry relies on fluorination and fluoroalkylation methods, and pressure is mounting to make these processes more environmentally friendly^{2,8–10}. In addition, because the unnatural fluorine-18 isotope possesses many desirable properties for applications in positron emission tomography (PET) imaging, there is great demand for convenient methods enabling late-stage ¹⁸F fluorination and ¹⁸F fluoroalkylation¹¹.

Although inorganic fluorides such as CaF₂ are abundant on earth, the organofluorine compounds typically required for the synthesis of pharmaceuticals are extremely rare in nature^{12,13}. As a result, almost all of the organofluorine compounds and materials used in industry and academia are synthetic. The source of fluorine for all fluorination and fluoroalkylation reactions is HF, which is prepared from the reaction of CaF₂ mineral (also called fluorite or fluorspar) with sulfuric acid.

FIGURE 1a outlines historical developments in organofluorine chemistry. The first chemically synthesized organofluorine compounds can be dated back to 1835, when fluoromethane was prepared from dimethyl sulfate and KF^{14,15}. Over the past 200 years, many fluorination and fluoroalkylation methods have been developed to prepare structurally diverse organofluorine compounds^{15–22}. Before the 1960s, fluorination mainly relied on corrosive or explosive reagents such as HF, F₂, SbF₃ and CoF₃ and classical reactions such as the Szwarc reaction, the Balz–Schiemann reaction, the Haleck reaction, the Simons process (electrochemical fluorination) and direct fluorination. Although these classical fluorination methods are inexpensive, they can be unsafe, require special equipment and offer low tolerance of common functional groups; as a result, they are only used in a small number of specialized chemical plants and research facilities. After the 1960s, more mild and selective fluorination reagents emerged, including diethylaminosulfur trifluoride (DAST), Deoxo-Fluor, Selectfluor and *N*-fluorobenzenesulfonimide (NFSI). Nucleophilic, electrophilic and radical fluoroalkylation reagents have also been developed, such as trifluoromethyltrimethylsilane (TMSCF₃; also known as Ruppert–Prakash reagent), methyl fluorosulfonyl-difluoroacetate (FSO₂CF₂CO₂Me; also known as Chen’s reagent), sodium trifluoromethanesulfinate (CF₃SO₂Na; also known as Langlois reagent), Umemoto reagent and Togni reagent. Fluorination and fluoroalkylation reactions mediated or catalysed by transition metals

Swarts reaction

A fluorination method used to prepare alkyl fluorides from alkyl chlorides or bromides. The typical fluorination reagent is antimony(III) trifluoride in the presence of a catalytic amount of antimony(V) salts.

Balz–Schiemann reaction

A method for the production of aryl fluorides from primary aromatic amine via a diazonium tetrafluoroborate intermediate.

Halex reaction

The nucleophilic substitution reaction between an aryl or alkyl halide and the other halide ions.

Fig. 1 | Outline of synthetic organofluorine chemistry. **a** | Historical developments in organofluorine chemistry. Brief description of major landmarks in the development of organofluorine chemistry. Purple boxes show Nobel Prize-winning discoveries. **b** | Overview of fluorination, trifluoromethylation, difluoromethylation and monofluoromethylation, as discussed in this Primer. An overview of state-of-the-art strategies that are suitable for late-stage modification of complex organic molecules. Both C–H functionalization and transformations of pre-functionalized substrates are covered. 5-FU, 5-fluorouracil; PTFE, polytetrafluoroethylene; R_fCu, perfluoroalkylcopper; TMSCF₃, trifluoromethyltrimethylsilane (also known as Ruppert–Prakash reagent).

have improved the functional group tolerance of these methods and now enable the late-stage fluorination and fluoroalkylation of complex molecules. Synthetic organofluorine chemistry has flourished in the past 20 years with the development of many new fluorination and fluoroalkylation methods including enzymatic fluorination, enantioselective fluorination and fluoroalkylation, transition metal-catalysed fluorination and fluoroalkylation, radical fluorination and fluoroalkylation, and ¹⁸F labelling of PET probes, among others^{11,15,23–27}.

This Primer focuses on C–H fluorination, trifluoromethylation, difluoromethylation and monofluoromethylation, and gives an introductory overview of other strategies for fluorination and fluoroalkylation (FIG. 1b), specifically discussing the substrate scope, plausible mechanisms and applications of these reactions for the synthesis of bioactive molecules and ¹⁸F-labelled PET agents. When choosing examples to illustrate fluorination and fluoroalkylation chemistry, we have taken into account the recent guidance from industry that

Phase transfer catalysis

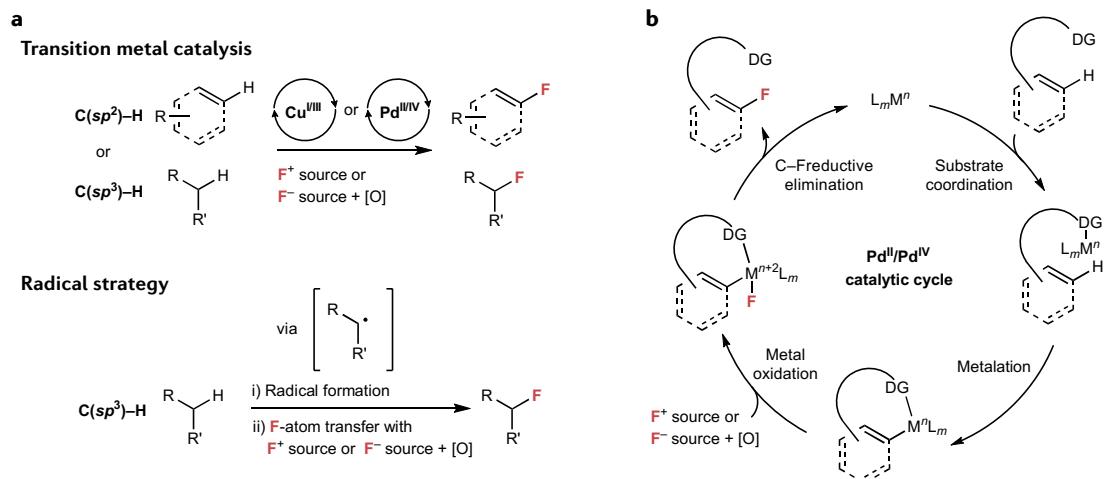
A process in which the rate of a reaction in a heterogeneous two-phase system is enhanced by the addition of a substance that transfers one of the reactants across the interface between the two phases.

fluorination and fluoroalkylation methods should be safe, practical, cost-effective, environmentally responsible and capable of being performed in the presence of heterocycles, with a reasonable functional group tolerance². In the last part of this Primer, we briefly provide our outlook on the future of fluorination and fluoroalkylation chemistry.

Experimentation

There have been great advances in the development of catalytic methods for the incorporation of single fluorine atoms or fluorinated groups into organic molecules over the past few decades. Many of these advances result from strategies aimed at optimizing reactivity and selectivity, for example combining judicious selection of fluorination and fluoroalkylation reagents with innovations in catalyst design^{28,29}. This section gives a brief introduction to fluorination with an emphasis on recently developed late-stage C–H fluorination methods, before discussing trifluoromethylation, difluoromethylation and monofluoromethylation strategies.

Fluorination


Several highly efficient reagents have been developed for fluorination at both sp^2 and sp^3 carbons. The most prominent are novel nucleophilic reagents, including HF derivatives such as HF-pyridine, triethylamine trihydrofluoride ($Et_3N\cdot 3HF$) and HF complexed with 1,3-dimethyl-3,4,5,6-tetrahydro-2-pyrimidinone (DMPU)^{30–32}; deoxyfluorinating reagents that gradually release fluoride in solution, such as DAST, Deoxo-Fluor, PhenoFluor and PyFluor³³; hydrogen-bonded tetrabutylammonium fluoride (TBAF) complexes such as TBAF($BuOH$)₄ and TBAF(pin)₂ that are tunable in terms of their nucleophilicity³⁴; and electrophilic reagents such as Selectfluor and NFSI that can also serve as powerful oxidants³⁵.

New catalytic manifolds have also played a critical role in augmenting fluorination approaches. Early studies focused on the use of pre-functionalized substrates

and transition metal catalysis to overcome the problem of reductive elimination for C–F bond formation; it is now clear that reductive elimination using Pd^0/Pd^{II} catalytic cycles is feasible with a bulky ancillary ligand that forces C–F bond formation from a 14-electron Pd^{II} complex³⁶. Additional advances were made with the realization that reductive elimination is energetically more facile using high oxidation metal complexes featuring in Pd^{II}/Pd^{IV} and Cu^{I}/Cu^{III} catalytic cycles, and with the design of novel ligands^{37–39}. Photoredox catalysis approaches have also emerged in recent years, for example those using decarboxylative fluorinations^{40,41}.

Fluorination at sp^3 carbons can give rise to the challenge of controlling stereoselectivity, and most enantioselective methodologies developed to date require electrophilic fluorination reagents and transition metal catalysis, or organocatalytic approaches such as enamine catalysis or cationic/anionic phase transfer catalysis^{42–45}. Recently, an alternative strategy inspired by the fluorinase enzyme and based on the merger between hydrogen bonding and phase transfer catalysis has allowed the use of cost-effective and easy-to-handle alkali metal fluorides as fluorine sources in asymmetric catalysis^{46–48}.

The incorporation of fluorine through C–H activation²⁴ avoids the need to pre-functionalize the substrate. In principle, it allows for selective functionalization at a late stage in synthesis, which is highly desirable when preparing novel drugs and chemical libraries⁴⁹. To date, the field has been dominated by processes using electrophilic fluorine (F^+) sources as these can act as both a fluorine source and an oxidant; however, approaches have emerged that use a nucleophilic fluorine (F^-) source in combination with a suitable external oxidant. C–H fluorinations can be broadly divided into two classes depending on the activation mode employed: transition metal-catalysed protocols, in which the metal is directly involved in the C–H activation step, and radical-based methodologies, in which a carbon-centred radical is involved (FIG. 2a).

Fig. 2 | Incorporation of fluorine via C–H activation. **a** | Two main modes of activation for C–H fluorination; transition metal-mediated catalysis and a radical-mediated strategy. The carbon-centred radicals are commonly formed via hydrogen abstraction by heteroatom radicals or high-valent metal-oxo intermediates. **b** | Proposed catalytic cycle for Pd^{II} -catalysed C–H fluorination from high-valent metal species. DG, directing group; F^+ source, electrophilic fluorine source; F^- source, nucleophilic fluorine source; L_m , ligand(s); M, metal; [O], oxidant.

Transition metal-catalysed C–H activation protocols. The most commonly used transition metal-catalysed strategy uses a Pd^{II}/Pd^{IV} catalytic cycle, which begins with the metal coordinating a directing group followed by metalation of a specific aromatic or aliphatic C–H bond (FIG. 2b). Oxidation of the metal by a F⁺ source or an oxidant used in combination with a F[–] source ensures the generation of a high-valent species that undergoes C–F bond formation through reductive elimination and regeneration of the catalyst. The conversion of aromatic C–H bonds into C–F bonds can be performed on substrates bearing a 2-pyridinyl directing group, using N-fluoropyridinium tetrafluoroborate as both an oxidant and a fluorinating agent and Pd(OAc)₂ as a catalyst³⁷ (mechanistic studies have reported the involvement of a high-valent metal species for this reaction⁵⁰). Several methodologies using various directing groups in combination with N–F reagents have now been described, expanding the scope of aromatic C–H fluorination^{24,51,52} (FIG. 3A). An alternative approach uses a Cu^I/Cu^{III} catalytic cycle^{38,39} and has been successfully translated to ¹⁸F radiolabelling⁵³ (FIG. 3A).

Aliphatic functionalization is more challenging than aromatic functionalization owing to the absence of a π-system for pre-coordination of the metal to the substrate and the greater conformational flexibility of aliphatic groups. Initial studies showed the feasibility of C(sp³)–F reductive elimination from high-valent Pt^{IV} and Pd^{IV} species^{54,55}. Subsequent reports proved that both bidentate and monodentate auxiliaries (FIG. 3B_a) are suitable directing groups for the selective catalytic β-fluorination of amino acid derivatives using Selectfluor^{56,57}. Various additional carboxylic acid derivatives were successfully fluorinated by applying a similar strategy²⁴. Enantioselective C–H fluorination can also be performed; asymmetric C(sp³)–F bond formation through C–H activation has been achieved up to 96% enantiomeric excess using a chiral α-amino acid derivative to form a transient chiral imine directing group and 2-alkyl benzaldehyde derivatives as substrates^{58,59}. A mechanistically distinct C(sp³)–H fluorination on allylic substrates (FIG. 3B_b) uses Pd(TFA)₂ as a catalyst, a bis-sulfoxide ligand and a chromium-salen salt co-catalyst to generate the active Pd^{II} π-allyl intermediate, which reacts with Et₃N·HF (REF.⁶⁰).

Radical-based protocols. The main alternative to metal-catalysed protocols for C–H fluorination is protocols using carbon-centred radical intermediates. In these approaches, the absence of directing groups makes regioselectivity less predictable and reactivity follows general trends based on C–H bond dissociation energies; consequently, only aliphatic, allylic and benzylic C–H bonds are reactive. Polar and steric effects can also contribute to regioselectivity, with the least substituted sites generally favoured.

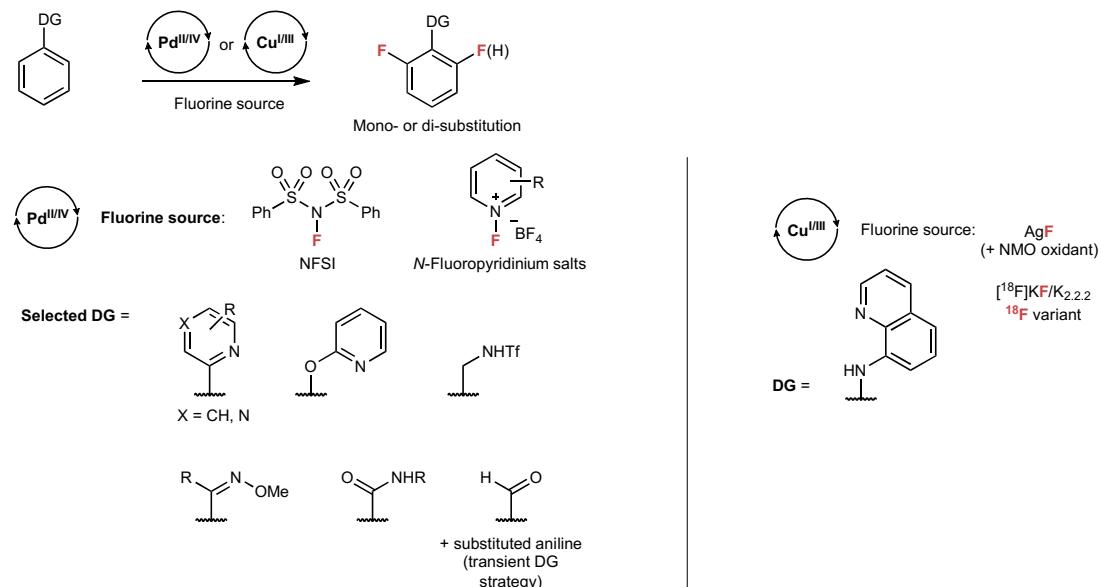
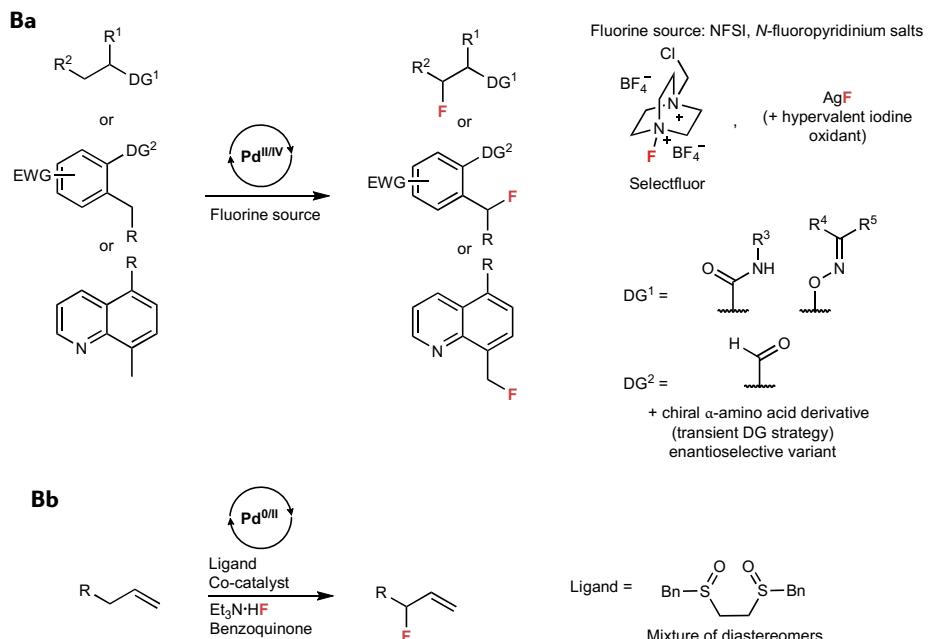
Radical-based methodologies can be broadly categorized into non-photocatalytic and photocatalytic approaches. Non-photocatalytic approaches emerged following the discovery that reagents with low N–F bond dissociation energies such as NFSI or Selectfluor

can be employed for fluorine atom transfer through the decarboxylative fluorination of peroxy esters⁶¹. The first C–H to C–F conversion of aliphatic, allylic and benzylic substrates using carbon-centred radicals used a Cu^I initiator and N-hydroxyphthalimide as a co-catalyst⁶² (FIG. 4a). Following this breakthrough, many other protocols involving metals such as silver and/or various radical precursors were reported²⁴. Heteroaromatic benzylic C–H bonds can be selectively fluorinated using a radical mechanism even in the absence of an external radical initiator when Selectfluor is employed as a fluorine source⁶³, and a complementary ionic approach to achieve the same transformation using NFSI has been proposed⁶⁴. Recently, a novel method has been reported for generating carbon-centred radicals for C–H fluorination using formal Cu^{III} fluorides⁶⁵. A further advance in the field is a bioinspired manganese-porphyrin catalytic system for aliphatic C–H fluorination using a nucleophilic source of fluoride — AgF and TBAF — in the presence of PhIO as the oxidant (FIG. 4a). High regioselectivity was achieved using the above technique in the fluorination of complex steroids⁶⁶ and, later, benzylic C–H bonds⁶⁷. The nucleophilic fluorine source used in the above method can be used for ¹⁸F radiolabelling⁶⁸. Alternative non-photocatalytic approaches ensure site selectivity by incorporating a specific functional group in the substrate that, upon activation, enables a 1,5-hydrogen atom transfer process. These approaches generally feature Fe^{II}/Fe^{III} catalytic cycles and are applied to aliphatic and benzylic C–H fluorination reactions^{24,69} (FIG. 4b).

Photocatalytic strategies use xanthones and 9-fluorenones as photocatalysts to enable the mono-fluorination and difluorination of benzylic C–H bonds in the presence of Selectfluor and visible light⁷⁰ (FIG. 4c). This methodology sparked the broad use of aryl ketones and decatungstate salts as photocatalysts for radical C–H fluorination²⁴, including the elegant use of [¹⁸F] NFSI for site-selective radiolabelling of amino acids and peptides^{71,72}.

Additional C–H fluorination methods. Additional mechanistically distinct methods for fluorination include the late-stage C–H fluorination of pyridines and diazines under mild conditions using AgF₂ for nucleophilic heteroaromatic substitutions⁷³ and non-directed aromatic C–H fluorination using a non-bound Pd^{II} complex oxidized in situ to Pd^{IV} by F⁺ reagent⁷⁴. In the latter method, fluoride delivery occurs through a transition state that density functional theory calculations have determined as a Pd^{III} singlet diradical⁷⁴. Both electron-rich and electron-poor arenes are tolerated, which is in stark contrast to uncatalysed electrophilic aromatic fluorinations that require electron-rich arenes. *Ortho*-regioisomeric and *para*-regioisomeric mixtures are obtained using this method⁷⁴.

Trifluoromethylation



Numerous trifluoromethylation reagents have been developed, such as TMSCF₃, FSO₂CF₂CO₂Me, CF₃SO₂Na, Togni reagent, Umemoto reagent and [Ph₂S⁺CF₃]TFO[–] (also known as Yagupolskii–Umemoto reagent). The

C–H bond dissociation energies

Measures of the strength of C–H bonds, which can be defined as the standard enthalpy change when C–H is cleaved by homolysis to give a carbon radical and a hydrogen atom.

Density functional theory

A computational quantum mechanical modelling method to investigate the electronic structure or nuclear structure of atoms, molecules and the condensed phases.

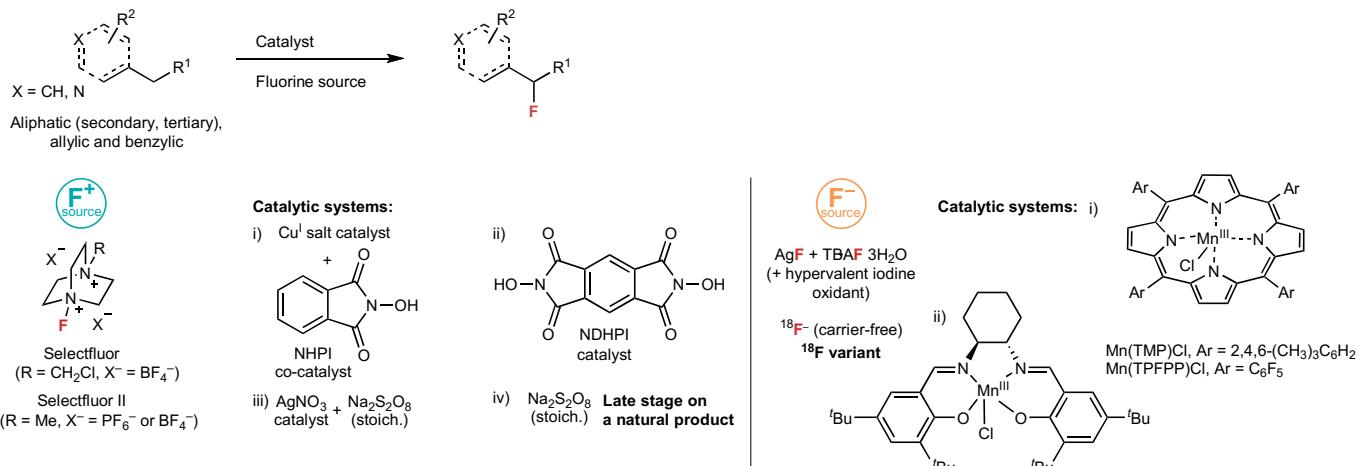
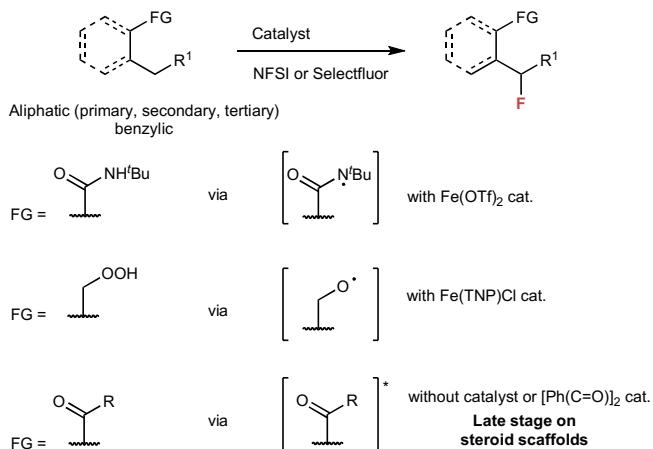
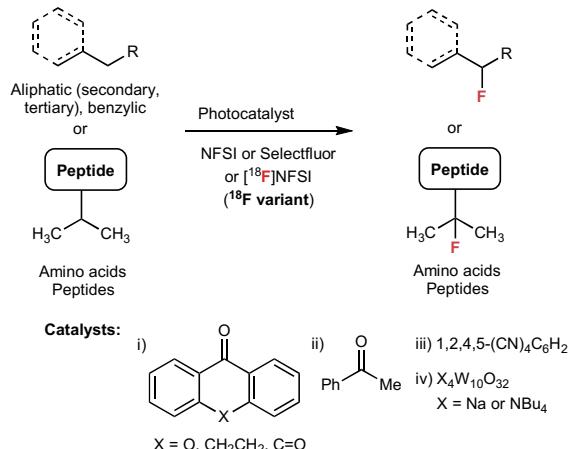



A C(sp²)-H functionalization**B** C(sp³)-H functionalization

Fig. 3 | Main palladium-catalysed and copper-catalysed C–H fluorination protocols. A | Palladium-catalysed or copper-catalysed C(sp²)-H functionalization. Potential fluorine sources and directing groups (DGs) shown for both palladium-catalysed and copper-catalysed reactions. **B** | Palladium-catalysed C(sp³)-H functionalization. Reactions achieved through a Pd^{II}/Pd^{IV} catalytic cycle (part **Ba**) and a Pd⁰/Pd^{II} catalytic cycle (part **Bb**). Pd^{II}/Pd^{IV} catalytic cycle is applicable for various substrates with a proper DG, and potential fluorine sources and representative DGs are shown. Pd⁰/Pd^{II} catalytic cycle is limited to allylic compounds and proceeds under the control of a ligand. EWG, electron-withdrawing group; K_{2.2.2}, Kryptofix 222; NFSI, *N*-fluorosulfonamides; NMO, *N*-methylmorpholine N-oxide.

emergence of these reagents has stimulated the development of various trifluoromethylation methods, including electrophilic, nucleophilic, radical and transition-metal catalysed or mediated reactions⁷⁵ (general reaction schemes shown in FIG. 5).

Transition metal-catalysed trifluoromethylation. Many transition metals have proven to be efficient at catalysing trifluoromethylation reactions, including nickel^{76,77},

palladium⁷⁸, copper⁷⁹ and silver⁸⁰. Copper is the most commonly used transition metal catalyst for trifluoromethylation, owing to its high efficiency and low cost (FIG. 6A). Copper-promoted couplings always involve a CuCF₃ complex, a key intermediate that can be generated *in situ* using reagent systems including a Cu¹ source with TMSCF₃ and a F⁻ source^{81–83}; a Cu¹ source with FSO₂CF₂CO₂Me (REFS^{84–86}); a Cu¹ source with (MeO)₃B⁻CF₃K⁺ (REF.⁸⁷); CuCl with HCF₃ and 'BuOK^{88,89}; copper

a Non-photocatalytic**b Directed by proximal group****c Photocatalytic (UV or visible light)**

Fig. 4 | Main C–H fluorination protocols via carbon-centred radical intermediates. **a** | C–H fluorination via non-photocatalytic reactions. General scheme, catalytic systems for use with electrophilic fluorine shown on the left and catalytic systems for use with nucleophilic fluorine shown on the right. **b** | C–H fluorination directed by a proximal functional group. Typical directing groups and catalysts shown below. **c** | C–H fluorination via photocatalytic reactions. cat., catalyst; F^+ source, electrophilic fluorine source; F^- source, nucleophilic fluorine source; FG, proximal functional group; NDHPI, N,N-dihydroxypyromellitimide; NFSI, N-fluorobenzenesulfonimide; NHPI, N-hydroxypythalimide; OTf, trifluoromethanesulfonate; TBAF, tetra-*n*-butylammonium fluoride; TMP, tetrakis[2,4,6-(trimethyl)phenyl]porphyrin; TNP, 5,10,15,20-tetra-naphthyl-porphyrin; TPFPP, 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin²⁴.

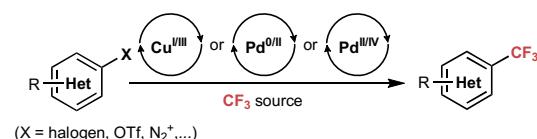
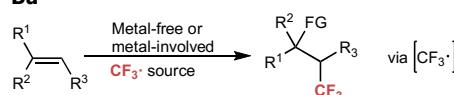
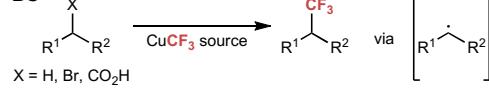
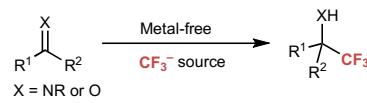
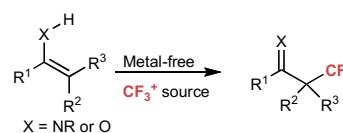
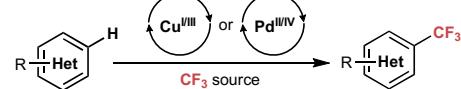
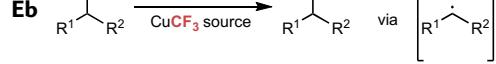
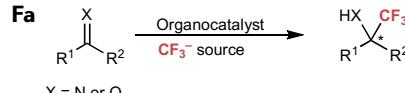
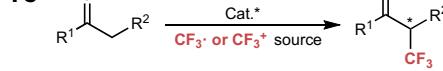
and $[\text{Ph}_2\text{S}^+\text{CF}_3]\text{TfO}^-$ (REF.⁹⁰); and copper and Umemoto reagent⁹¹. Copper sources may be used in catalytic or stoichiometric quantities, depending on the reaction conditions. Some ligand-coordinated CuCF_3 complexes are shelf-stable and can be used directly as reagents, including $(\text{phen})\text{CuCF}_3$ (REFs^{92,93}) and $(\text{Ph}_3\text{P})_3\text{CuCF}_3$ (REF.⁹⁴). Copper-promoted coupling could be extended to a wide range of substrates, such as aryl/alkyl halides, aryl diazonium salts and aryl or alkyl boronic acids. It is generally accepted that reductive elimination from a $\text{RCu}^{\text{III}}\text{CF}_3$ complex is a key step in copper-promoted coupling reactions^{95–97}; the exact mechanism for this step was elusive until mechanistic investigation of stable isolated $\text{RCu}^{\text{III}}\text{CF}_3$ complexes revealed that reductive elimination proceeds through a concerted C–C bond-forming pathway involving a three-membered ring

transition state^{95–97}. Electron-withdrawing ligands are favourable for this process as electrons flow from R and trifluoromethyl groups to the metal and ligands during reductive elimination.

Radical trifluoromethylation. Radical trifluoromethylation may occur through the addition of a CF_3^{\cdot} radical into unsaturated functionalities (FIG. 6B a) or the transfer of a CF_3 group from $\text{Cu}^{\text{II}}\text{CF}_3$ to an alkyl radical (FIG. 6B b). The CF_3^{\cdot} radical can be generated from various reagents, including $\text{CF}_3\text{SO}_2\text{Na}$ (REF.⁹⁸), TMSCF_3 (REF.⁹⁹), Togni reagent^{100,101}, Umemoto reagent¹⁰⁰, $[\text{Ph}_2\text{S}^+\text{CF}_3]\text{TfO}^-$ (REF.¹⁰⁰) and CF_3I (REF.¹⁰²), under oxidative or reductive conditions. Oxidants or reductants are usually required in stoichiometric quantities, although catalytic conditions can work if the redox reactions of the

Heteroatom

Any atom that is not a carbon atom or a hydrogen atom, similar to heteroelement.










reagents can readily occur. The CF_3^\cdot radical can react with alkenes or alkynes to provide various difunctionalized products^{103,104}. Trifluoromethylation of alkyl radicals has been much less developed¹⁰⁵. Alkyl radicals can be produced from alkyl halides, carboxylic acids and C–H bonds, and the $\text{Cu}^{\text{II}}\text{CF}_3$ complex may be generated in situ from $\text{Cu}^{\text{III}}\text{CF}_3$ /reductant or $\text{Cu}^{\text{I}}\text{CF}_3$ /oxidant. This radical process is limited to primary and secondary radicals; trifluoromethylation of tertiary radicals has not yet been achieved. It is unclear whether trifluoromethylation of the alkyl radical involves the formation of a $\text{RCu}^{\text{III}}\text{CF}_3$ intermediate or the direct transfer of the CF_3 group from $\text{Cu}^{\text{I}}\text{CF}_3$ to the alkyl radical without forming a $\text{RCu}^{\text{III}}\text{CF}_3$ intermediate (FIG. 6Bc).

Nucleophilic and electrophilic trifluoromethylation. The direct nucleophilic attack of a CF_3^- anion on electrophiles is another strategy used for CF_3 incorporation, and TMSCF_3 is the most commonly used reagent for this type of nucleophilic trifluoromethylation^{106,107} (FIG. 6C). The nucleophilic method can be extended to a wide range of electrophiles, including aldehydes, ketones, esters and imines. Electrophilic trifluoromethylation strategies can be applied to heteroatom-centred nucleophiles and carbon-centred nucleophiles¹⁰¹ (FIG. 6D). Carbon-centred nucleophiles must be electron-rich species, such as enolates or enamines, which can be generated in situ or prepared in advance. Electrophilic reagents include Umemoto reagent¹⁰⁸, Togni reagent¹⁰¹ and

Shibata reagent¹⁰⁹. Lewis acids can be used to enhance the electrophilicity of Togni reagent if the nucleophile is not reactive enough.

C–H trifluoromethylation. C–H trifluoromethylation is usually enabled by transition metal-catalysed or transition metal-mediated methods for the metalation of a C–H bond (FIG. 6Ea), or by radical-based approaches using a carbon-centred radical (FIG. 6Eb). Commonly used transition metals include palladium and copper. Reductive elimination involves electron flow from a trifluoromethyl group to a metal; as the trifluoromethyl group is a strong electron-withdrawing group, reductive elimination is more facile when using a high oxidation state metal that can withdraw electrons more easily. Palladium-catalysed C–H trifluoromethylation usually involves a $\text{Pd}^{\text{II}}/\text{Pd}^{\text{IV}}$ catalytic cycle. Pioneering work in palladium-catalysed reactions used either pyridinyl¹¹⁰, amide¹¹¹ or amino moieties¹¹² as directing groups for arene C(sp^2)-H bond trifluoromethylation. For copper-catalysed C–H trifluoromethylation, a $\text{Cu}^{\text{I}}/\text{Cu}^{\text{III}}$ catalytic cycle is feasible^{113,114}. No directing group is required if the proton from the C–H bond is acidic enough¹¹³.

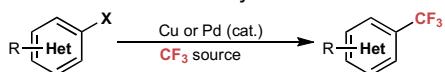
Radical-based C–H trifluoromethylation methods involve the generation of a radical from a C–H bond through homolysis^{115–117}. Homolysis of alkyl C–H bonds is challenging owing to their high bond strength, and radical-based trifluoromethylation of alkyl C–H bonds remains an active area of research. As described in

A | Transition metal-catalysed/mediated cross-coupling**B | Radical reaction****Ba****Bb****C | Nucleophilic addition****D | Electrophilic reaction****E | C–H trifluoromethylation****Ea****Eb****F | Asymmetric trifluoromethylation****Fb**

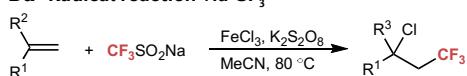
Fig. 5 | General overview of trifluoromethylation methods. **A** | Transition metal-catalysed trifluoromethylation.

B | Radical trifluoromethylation of alkenes (part **Ba**) and sp^3 carbon atoms (part **Bb**). **C** | Nucleophilic trifluoromethylation of unsaturated systems. **D** | Electrophilic trifluoromethylation. **E** | C–H trifluoromethylation using CF_3^- sources (part **Ea**) and CuCF_3 sources (part **Eb**). **F** | Asymmetric trifluoromethylation using CF_3^- synthons (part **Fa**) and CF_3^\cdot or CF_3^+ synthons (part **Fb**). Cat.*, catalyst; FG, proximal functional group; OTf, trifluoromethanesulfonate.

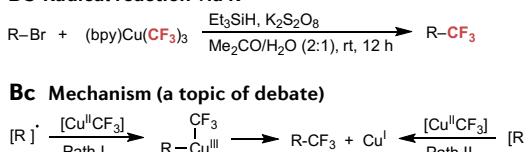
FIG. 6Bc, the radical reaction proceeds through the transfer of a CF_3 group — generated *in situ* from $\text{Cu}^{\text{II}}\text{CF}_3$ — to the alkyl radical, although it is not very clear how the CF_3 group is transferred.

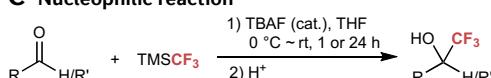

Asymmetric catalytic trifluoromethylation remains largely unexplored^{118–120}. Reported asymmetric catalytic methods include nucleophilic, electrophilic and radical trifluoromethylation using organocatalysts or transition metal catalysis (FIG. 6F). Asymmetric nucleophilic reactions are limited to active electrophiles such as ketones and imines, and asymmetric electrophilic and radical reactions require the generation of enolates or enamines from substrates. Mild and general asymmetric catalytic trifluoromethylation approaches need to be further developed because current asymmetric catalytic trifluoromethylation methods have limited substrate

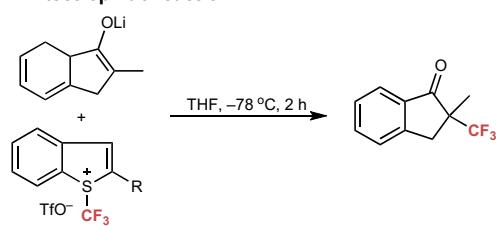
scope. Additional examples of trifluoromethylations are shown in Supplementary Fig. 1.


Difluoromethylation

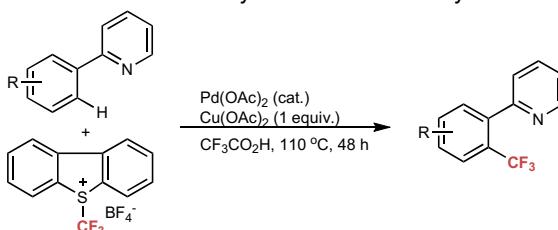
Difluoromethyl compounds — organic compounds containing a CF_2H group — are generally synthesized through difluorination¹²¹ or difluoromethylation¹²² reactions, hydrogenation of *gem*-difluoroalkenes¹²³ or hydrodefluorination of trifluoromethyl compounds¹²⁴. Difluoromethylation is the most straightforward of the above approaches owing to its good step economy and high functional group tolerance in introducing CF_2H groups, and has progressed rapidly over the past decade^{29,125–128}. Here, we introduce state-of-the-art methods for the formation of $\text{C}(\text{sp}^3)\text{—CF}_2\text{H}$, (hetero)aryl- CF_2H and heteroatom- CF_2H bonds, all of which are of


A Transition metal-catalysed/mediated cross-coupling


Ba Radical reaction via CF₃


Bb Radical reaction via R[•]

C Nucleophilic reaction



D Electrophilic reaction

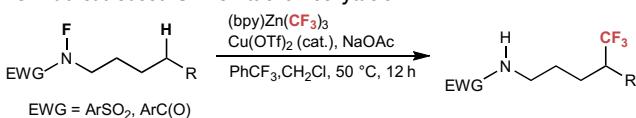
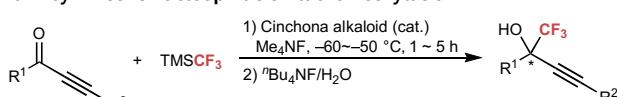
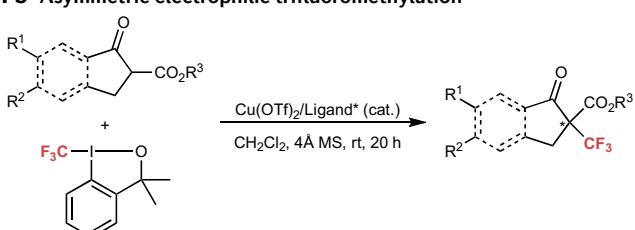
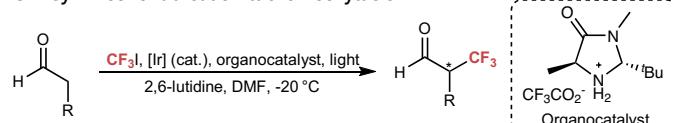


Fig. 6 | Example trifluoromethylation protocols. **A** | Transition metal-catalysed or transition metal-mediated cross-coupling. Both aryl and alkyl substrates can act as the coupling partners. **B** | Radical trifluoromethylation can occur via the attack of a CF_3^{\bullet} radical on an unsaturated bond (part **Ba**) or via the transfer of a CF_3 group to a radical (part **Bb**). Proposed mechanisms shown in part **Bc**. **C** | Nucleophilic trifluoromethylation. Trifluoromethyltrityl-methylsilane (TMSCF_3) is one of the most commonly used reagents. **D** | Electrophilic trifluoromethylation. This protocol may have limited application


Ea Transition metal-catalysed C–H trifluoromethylation


Eb Radical-based C–H trifluoromethylation


Fa Asymmetric nucleophilic trifluoromethylation

Eb. Asymmetric electrophilic trifluoromethylation

Fc Asymmetric radical trifluoromethylation

because use of active substrates is usually required. **E** | C–H trifluoromethylation. The activation of a C–H bond is usually achieved by C–H metalation (part **Ea**) or by radical-mediated homolysis of the C–H bond (part **Eb**). **F** | Asymmetric catalytic trifluoromethylation. Method includes nucleophilic (part **Fa**), electrophilic (part **Fb**) and radical (part **Fc**) reactions. bpy, 2,2'-bipyridine; cat., catalyst; DMF, dimethylformamide; EWG, electron-withdrawing group; MS, molecular sieve; rt, room temperature; TBAF, tetra-*n*-butylammonium fluoride; TfO⁻, trifluoromethanesulfonate; THF, tetrahydrofuran.

strong interest in pharmaceutical chemistry and have benefited from either reagent or catalyst design.

Difluoromethylation of sp^3 carbons. Difluoromethylated sp^3 carbon centres can be constructed via addition or substitution reactions of pre-functionalized substrates with a proper difluoromethylation reagent (FIG. 7). The nucleophilic addition of a difluoromethanide anion (HCF_2^-) or its equivalent (FG-CF_2^-) to electrophiles such as aldehydes, ketones and imines has been developed for the synthesis of difluoromethylated functional molecules such as alcohols and amines (FIG. 7a) and is normally achieved using either $\text{PhSO}_2\text{CF}_2\text{H}$ or TMSCF_2H as the reagent in the presence of a base^{22,127–130}. However, non-catalysed nucleophilic substitution at sp^3 carbons is limited to the difluoromethylation of primary alkyl halides, such as RCH_2I , and pseudohalides, such as triflates. The use of metal catalysts allows for the difluoromethylation of a wide range of alkyl electrophiles^{131–134}. Recently, copper-catalysed difluoromethylation of alkyl radicals has been developed, inspired by the trifluoromethylation of alkyl radicals (FIG. 7b). This method proceeds through a $\text{Cu}^{\text{I}}/\text{Cu}^{\text{II}}/\text{Cu}^{\text{III}}$ catalytic cycle that involves single-electron transfer between CuCF_2H species and redox-active alkyl electrophiles such as *N*-hydroxytetrachlorophthalimide (TCNHPI) esters and pyridinium salts^{131,132}. In the above case, the structurally well-defined zinc complex $(\text{DMPU})_2\text{Zn}(\text{CF}_2\text{H})_2$ is the most suitable nucleophilic difluoromethyl source. This strategy allows the installation of a CF_2H group at unactivated primary, secondary and even tertiary carbon centres. Addition of the difluoromethyl radical to alkenes represents a reliable method for the construction of $\text{C}(sp^3)\text{—CF}_2\text{H}$ bonds under mild conditions^{127,128,135} (FIG. 7c), which has recently stimulated the exploitation of structurally diverse, novel and practical difluoromethyl radical sources that can be readily activated under either chemical oxidation conditions or photoredox catalysis conditions^{136–139}. C–H difluoromethylation at sp^3 carbon centres mainly focuses on the reaction of activated carbon acids with a difluorocarbene intermediate under the activation of a base¹⁴⁰ (FIG. 7d). The development of new difluorocarbene sources, including TMSCF_2Br and several *S*-(difluoromethyl)sulfonium salts, has significantly improved reaction efficiency and greatly expanded the substrate scope^{127,128,141–143}. The difluoromethylation of unactivated C–H bonds is still rare (FIG. 7e); however, copper-catalysed benzylic C–H difluoromethylation can proceed through the formation of benzylic radicals after intramolecular C–H activation, followed by the copper-catalysed transfer of difluoromethyl groups to the benzylic radicals¹⁴⁴.

(Hetero)aromatic difluoromethylation. (Hetero)aromatic difluoromethylation is a rapidly developing and practical method of synthesizing difluoromethyl (hetero)arenes^{29,125,126} (FIG. 8). These reactions can be categorized as cross-couplings of organohalides or pseudohalides with TMSCF_2H (REFS^{145,146}), structurally well-defined difluoromethyl metal complexes^{147–151} or difluoromethyl radical sources^{152,153} (FIG. 8Aa–c); cross-couplings of organoboron or other organometallic reagents with difluoromethyl radical sources^{154–157} or difluorocarbene

sources^{158–161} (FIG. 8Ba–c); and C–H difluoromethylation with TMSCF_2H (REFS^{162,163}) or difluoromethyl radical sources^{164–169} (FIG. 8Ca,b). Difluoromethylation is more compatible with palladium, nickel and iron catalysis than trifluoromethylation, owing to the relative ease of the reductive elimination of heteroaryl– CF_2H from the corresponding metal complexes^{147,152,154}. Difluoromethylation of aryl borons using palladium difluorocarbene represents a novel method in this field that efficiently incorporates a CF_2H group into an aromatic ring by using various difluorocarbene sources (FIG. 8Bc), including the inexpensive industrial chemical HCF_2Cl (also known as Freon-22, an ozone-depleting substance)^{158–161}. As for fluorination and trifluoromethylation, the introduction of CF_2H through C–H bond activation is highly attractive for the late-stage modification of drug molecules and natural products. Available methods mainly rely on the innate nucleophilic reactivity of the CF_2H radical towards heteroarenes^{164–169}. Strategies that offer different site selectivities to direct radical difluoromethylation include the reaction of masked difluoromethyl radicals^{170,171} such as $\cdot\text{CF}_2\text{SO}_2\text{Ph}$ with CF_2Cl , or the use of copper-mediated oxidative C–H difluoromethylation with TMSCF_2H (REF.¹⁶²) (FIG. 8Cc). In addition, metal-catalysed C–H functionalization of arenes followed by difluoromethylation offers a complementary approach for late-stage C–H difluoromethylation^{160,172,173}. Vinylic difluoromethylation can be achieved^{29,125–128}, although this method has attracted less attention than (hetero)aromatic difluoromethylation. Addition protocols are shown in Supplementary Fig. 2.

Heteroatom difluoromethylation. Difluoromethylation of heteroatom nucleophiles with difluorocarbene is the most convenient method for obtaining functional molecules containing HCF_2O , HCF_2S and HCF_2N (REF.¹⁷⁴) (FIG. 8D). The ozone-depleting substance HCF_2Cl had been the most commonly used reagent for difluoromethylation of heteroatoms, although the environmentally benign alternatives $\text{ClCF}_2\text{CO}_2\text{Na}$, $\text{BrCF}_2\text{P}(\text{O})(\text{OEt})_2$, $\text{FSO}_2\text{CF}_2\text{CO}_2\text{H}$ and TMSCF_2Br are commercially available and frequently used^{127,128,175}. Unlike phenols, alcohols can react with difluorocarbene without deprotonation owing to the increased electron density of oxygen; $\text{FSO}_2\text{CF}_2\text{CO}_2\text{H}$ and TMSCF_2Br are therefore suitable reagents for difluoromethylation of alcohols as they can release difluorocarbene under non-basic conditions^{175,176}. Recently, numerous methods for incorporation of the HCF_2S moiety have been developed to synthesize difluoromethyl thioethers¹⁷⁷.

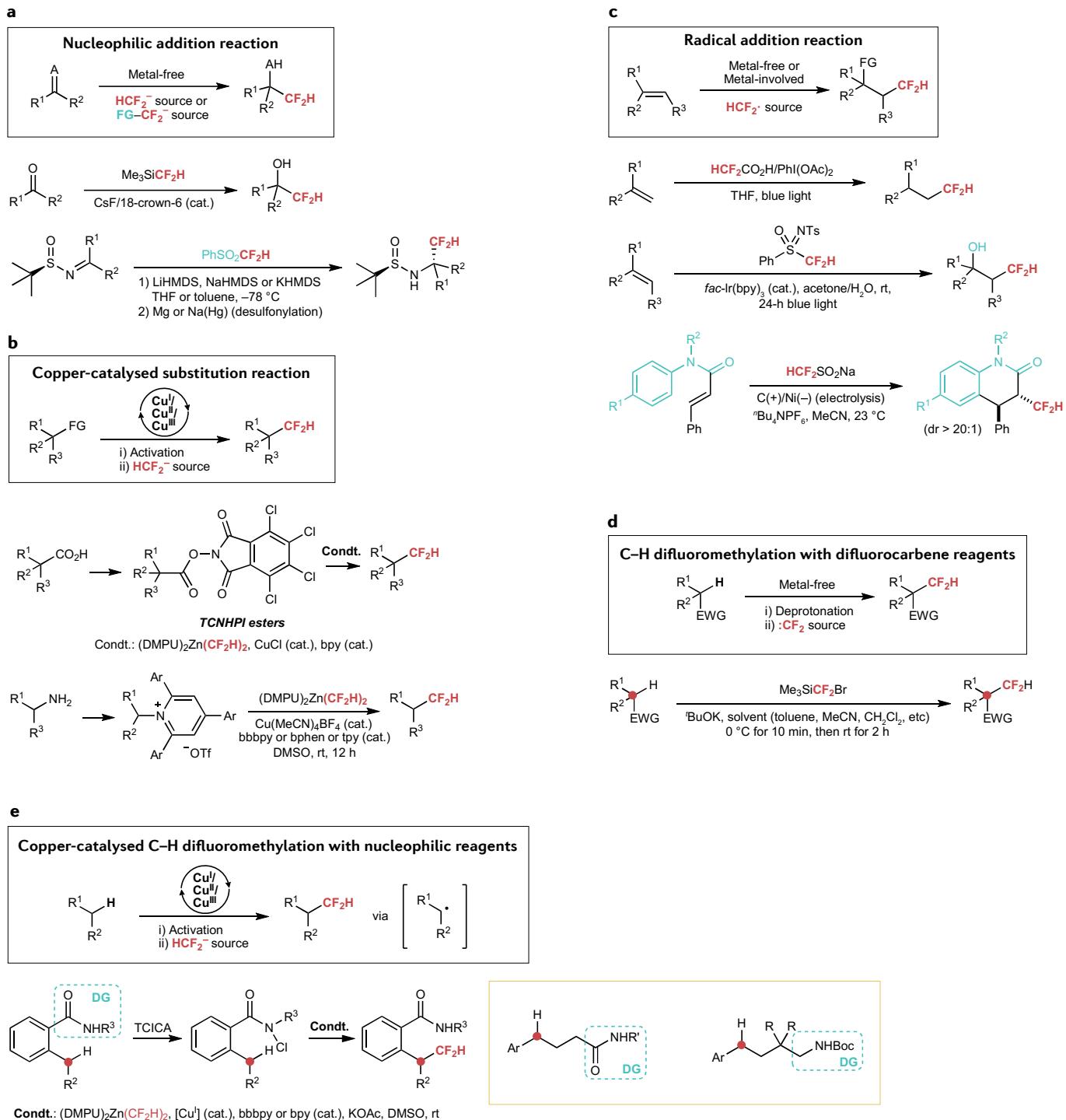
Monofluoromethylation

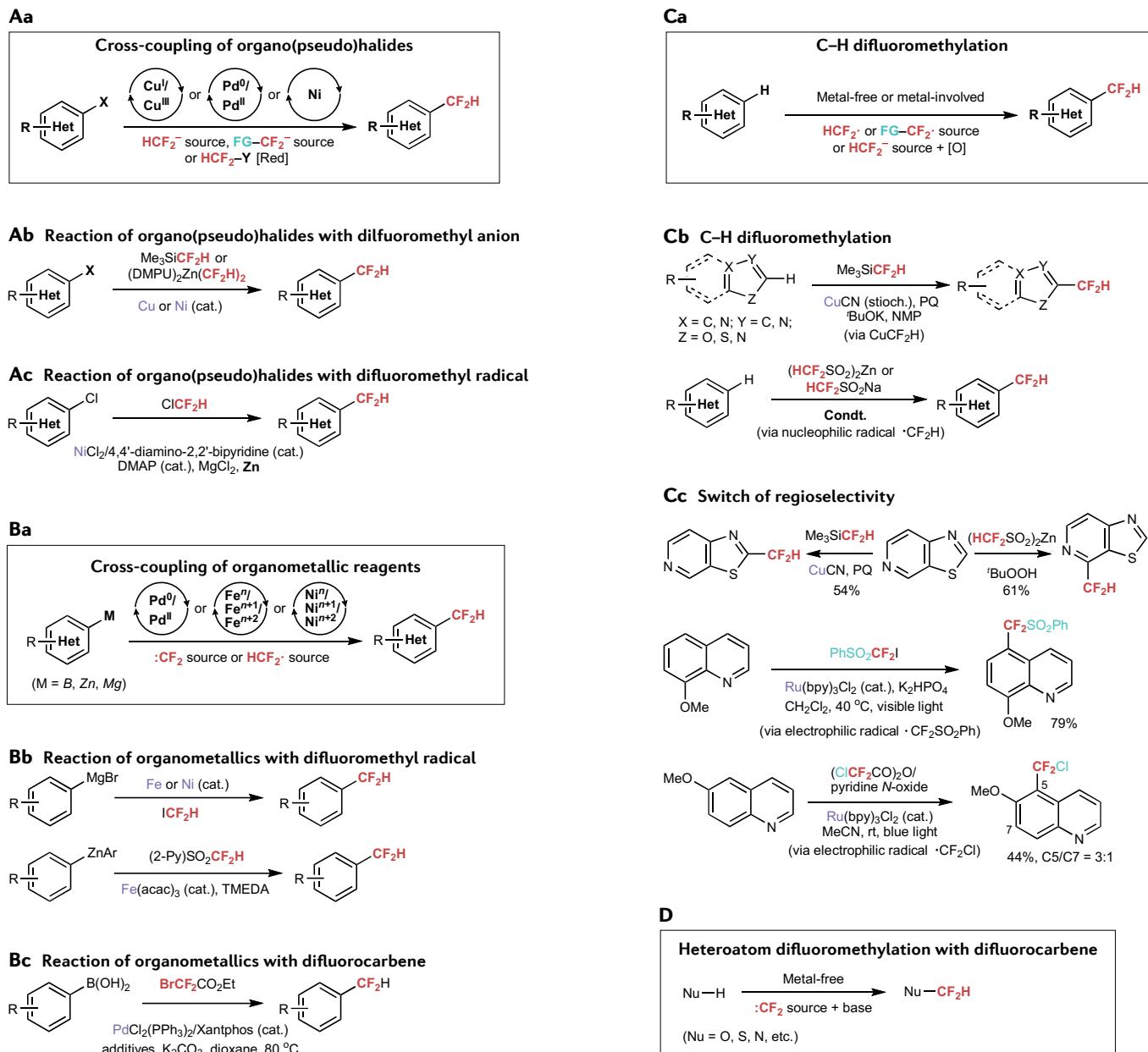
Few C–H monofluoromethylation reactions had been reported to date, despite the ability of monofluoromethyl groups to serve as bioisosteres for various pharmaceutically relevant functional groups (for example, CH_3 , CH_2OH and CH_2NH_2)^{22,26,122,178}. A conventional two-step approach to monofluoromethylation involves an initial chloromethylation step known as the Blanc reaction, which uses formaldehyde and hydrogen chloride or zinc chloride to install a monochloromethyl functional group onto arenes and heteroarenes¹⁷⁹.

Bioisosteres

Chemical substituents or groups with similar physical or chemical properties.

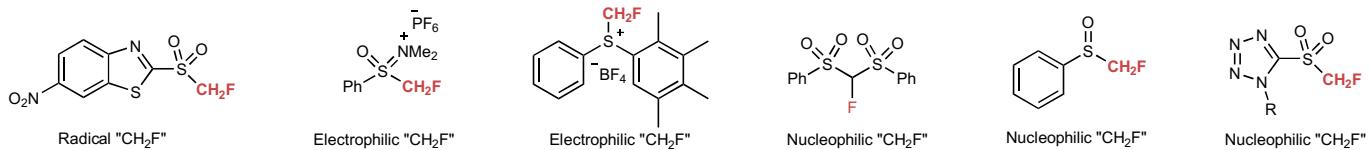
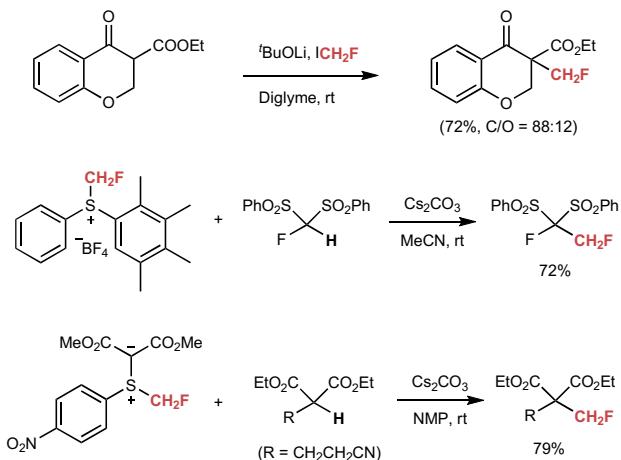
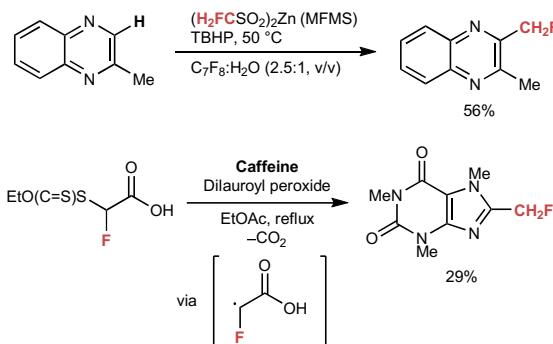
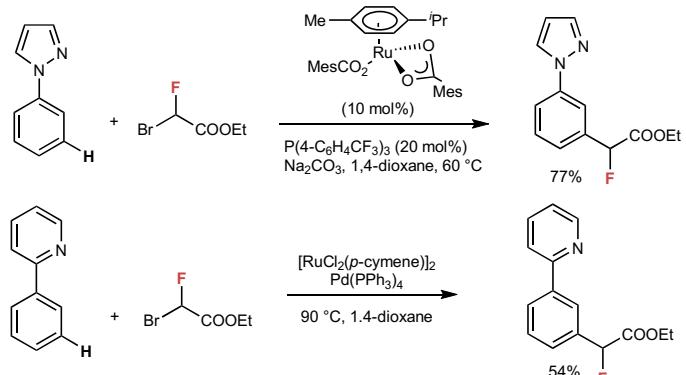
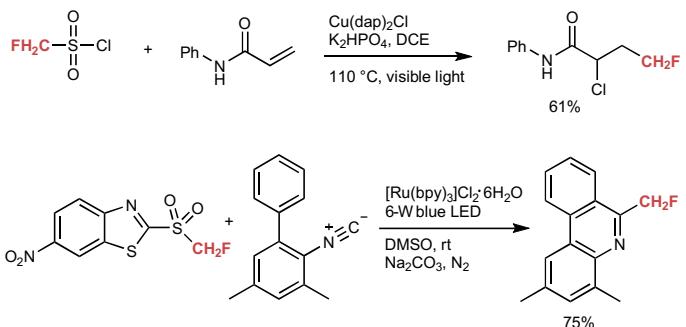
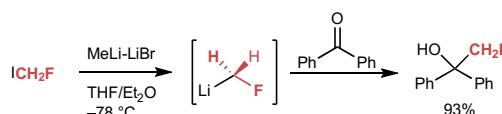
PRIMER




Fig. 7 | Main protocols of introducing CF_2H at sp^3 carbon centres.

General scheme for each protocol given in each box, specific examples shown below. **a** | Nucleophilic addition of difluoromethyl anion or its equivalent ($\text{FG}-\text{CF}_2^-$) to unsaturated systems. In the first example, TMSCF_2H is normally activated by a fluoride salt; in the second example, $\text{PhSO}_2\text{CF}_2\text{H}$ is activated by a base such as lithium bis(trimethylsilyl)amide (LiHMDS). Electron-deficient alkenes are also suitable substrates. **b** | Nucleophilic substitution of alkyl electrophiles with a difluoromethyl anion, mainly catalysed by copper through a $\text{Cu}^{\text{I}}/\text{Cu}^{\text{II}}/\text{Cu}^{\text{III}}$ catalytic cycle. **c** | Addition of difluoromethyl radical to alkenes. After addition to alkenes, hydrogen abstraction, further functionalization and further cyclization can occur as the subsequent reaction. **d** | Difluoromethylation of the C–H bonds of

carbon acids with difluorocarbene. **e** | Difluoromethylation of non-activated C–H bonds with nucleophilic difluoromethylation reagents catalysed by copper through a $\text{Cu}^{\text{I}}/\text{Cu}^{\text{II}}/\text{Cu}^{\text{III}}$ catalytic cycle. The carbon-centred radical is formed through hydrogen abstraction of the C–H bond by a heteroatom radical such as a N radical, which is generated through cleavage of a N–Cl bond. bipy , 4,4'-di-*tert*-butyl-2,2'-bipyridine; bphen , bathophenanthroline; tpy , 2,2'-bipyridine; cat., catalyst; :CF_2 , difluorocarbene; DG, directing group; DMPU, *N,N'*-dimethylpropyleneurea; DMSO, dimethylsulfoxide; EWG, electron-withdrawing group; FG, functional group; OTf, trifluoromethanesulfonate; rt, room temperature; TCICA, trichloroisocyanuric acid; TCNHPt, *N*-hydroxytetrachlorophthalimide; THF, tetrahydrofuran; tpt , 2,2':6',2"-terpyridine.







Well-established halide-exchange reactions using fluoride salts such as KF or AgF support conversion to the monofluoromethyl derivative¹⁸⁰. An increased interest in CH₂F has inspired the development

of several nucleophilic^{181–184}, electrophilic¹⁸⁵ and radical^{186–188} monofluoromethylating reagents (FIG. 9a). The first example of electrophilic C–H monofluoromethylation was reported in 1953 and involved the reaction

Fig. 8 | Main protocols of introducing CF₂H at (hetero)aromatic carbons and heteroatoms. General scheme for each protocol given in the box, examples shown below. **A** | General scheme for difluoromethylation of organohalides or organopseudohalides (such as aryl triflate and aryl diazonium salt) (part **Aa**) and typical examples (parts **Ab**, **Ac**). In part **Ab**, (SIPr)AgCF₂H, TMSCF₂CO₂Et and PhCOCF₂H are also suitable difluoromethylation reagents (under palladium catalysis or copper catalysis). In part **Ac**, HCF₂Br/(TMS)₃SiH is also a suitable combination; however, the use of Ar–Br rather than Ar–Cl is required (under photocatalysis). **B** | General scheme for difluoromethylation of organometallic reagents (part **Ba**) and typical examples (parts **Bb** and **Bc**). In part **Bb**, HCF₂Br is also a suitable difluoromethylation reagent (react with arylboronic acids under nickel catalysis). In part **Bc**, BrCF₂P(O)(OEt)₂, Ph₃P⁺CF₂CO₂[–] and HCF₂Cl are also suitable difluorocarbene sources. **C** | General scheme for C–H difluoromethylation of aromatic and heteroaromatic compounds (part **Ca**) and typical examples (parts **Cb**, **Cc**). In part **Cb**, two pathways for C–H difluoromethylation are described; in the

radical pathway, both the difluoromethyl radical (HCF₂•) and its equivalents (FG–CF₂•) can undergo the reaction. The following are also suitable reagents: HCF₂CO₂H/[O], HCF₂SO₂Cl, [Ph₃P(CF₃H)]⁺Br[–], PhSO₂CF₂I, (ClCF₂CO₂O)/[O], BrCF₂CO₂Et. In part **Cc**, two methods to alter regioselectivity are described; one to change reaction conditions (the first example), the other to change the electronic nature of the difluoromethyl group (with PhSO₂CF₂• or ClCF₂•) (the second and third example). In the last two examples, direct reaction with HCF₂• is selective for the 2-position of the quinolone core. **D** | General scheme for difluoromethylation of heteroatoms. For a summary of suitable difluorocarbene sources, refer to REF.¹⁷⁴. Transition metal catalysts depicted in purple. bpy, 2,2'-bipyridine; cat., catalyst; :CF₂, difluorocarbene; DMAP, 4-dimethylaminopyridine; DMPU, N,N'-dimethylpropyleneurea; FG, functional group; NMP, N-methyl-2-pyrrolidone; [O], oxidant; PQ, 9,10-phenanthrenequinone; 2-Py, 2-pyridyl; [Red], reductant; rt, room temperature; SIPr, 1,3-bis(2,6-diisopropylphenyl)imidazolidine; TMEDA, tetramethylethylenediamine.

a Examples of 'CH₂F' reagents**b Electrophilic C–H monofluoromethylation****c Direct radical monofluoromethylation of C(sp²)–H bonds via Minisci-like reactions****d Surrogates for monofluoromethyl group by C–H activation****e Radical addition reactions****f Nucleophilic monofluoromethylation**

Fig. 9 | Monofluoromethylating reagents and their use in C–H monofluoromethylation reactions. **a** | Examples of radical, electrophilic and nucleophilic monofluoromethylating reagents. **b** | Protocols for electrophilic C–H monofluoromethylation of C(sp³)–H bonds. **c** | Protocols for addition of monofluoromethyl groups to heterocycles via radical processes. **d** | Addition reactions with monofluoromethyl surrogates to aromatics. **e** | Addition reactions with monofluoromethyl radical. **f** | Protocol for nucleophilic monofluoromethylation of ketones. bpy, 2,2'-bipyridine; DCE, 1,2-dichloroethane; DMSO, dimethylsulfoxide; MFMS, monofluoromethanesulfinate; NMP, N-methyl-2-pyrrolidone; TBHP, tert-butyl hydroperoxide; THF, tetrahydrofuran; rt, room temperature.

of arenes with fluoromethanol in the presence of zinc(II) chloride, which afforded fluoromethylarenes^{189,190}. C–H monofluoromethylation reactions now primarily involve deprotonation of 1,3-dicarbonyls, followed by reaction of the resultant carbanion with an electrophilic monofluoromethylation reagent^{191–194} (FIG. 9b). For example, β -ketoesters can react with fluoroiodomethane and lithium *tert*-butoxide to produce α -monofluoromethyl adducts¹⁹². Commonly, competitive O monofluoromethylation is a complicating factor, and in a few cases is a predominant reaction pathway¹⁹⁵ that is proposed to

occur via a radical process^{196,197}. Reagents that support C monofluoromethylation while avoiding the use of the ozone-depleting reagents chlorofluoromethane (CFC-31) and bromofluoromethane (CFC-31B1) are needed¹⁷⁸. S-(Monofluoromethyl) diarylsulfonium tetrafluoroborate has been developed as an electrophilic source of CH₂F and supports the α -monofluoromethylation of bis(phenylsulfonyl)methane and diethylmalonate derivatives¹⁹³ (FIG. 9b). Subsequent work has also described the use of sulfonium ylides for the monofluoromethylation of 2-aryl-substituted and 2-alkyl-substituted malonates¹⁹⁴.

Minisci reaction

A nucleophilic radical substitution to an electron-deficient aromatic compound, most commonly involving the introduction of an alkyl group to a nitrogen-containing aromatic heterocycle.

Although the CH_2F radical was first observed and characterized in 1971 (REF.¹⁹⁸), its use for radical C–H monofluoromethylation was not demonstrated until 2012, when a series of zinc sulfinate salts were reported to be capable of transferring fluoroalkyl radicals to nitrogen-containing heteroarenes through a Minisci reaction-like process¹⁹⁹ (FIG. 9c). Among these zinc sulfinate reagents was zinc monofluoromethylsulfinate (MFMS), which reacts with a small collection of heteroarenes with excellent regioselectivity. MFMS can be synthesized in four simple steps from 4-chlorobenzyl mercaptan on the gram-scale; however, unlike other zinc and sodium fluoroalkylsulfinates, it is not commercially available. The fluoroacetate radical, generated from a xanthate precursor, can also engage in a Minisci-like reaction with caffeine²⁰⁰ (FIG. 9c). Subsequent *in situ* decarboxylation of the carboxyfluoromethylated caffeine reveals a monofluoromethyl derivative. Further development of fluoroacetates as synthetic surrogates for the monofluoromethyl group has been independently reported^{201,202} (FIG. 9d); for example, ruthenium-catalysed, *meta*-selective C–H monofluoromethylations of arenes have been accomplished using bromofluoroacetate. These reactions proceed via *ortho* C–H insertion directed by a nitrogen-containing heteroaryl group and subsequent nucleophilic addition of the fluoroacetate radical into the arene. Under photoredox copper catalysis conditions, fluoromethylsulfonyl chloride can be used as a source of monofluoromethyl radicals for additions into electron-deficient alkenes¹⁸⁷ (FIG. 9e). Similarly, a ruthenium photoredox catalyst can be used for generating monofluoromethyl radicals from monofluoromethyl sulfones for radical additions into isocyanides¹⁸⁶. As a complementary approach for addition of the monofluoromethyl group, nucleophilic reagents such as the lithium anion (FIG. 9f) have been used for the synthesis of terminal fluoroalkenes^{184,203} and 2,2-disubstituted fluorovinyl sulfones^{182,183}, addition into ketones and imines¹⁸¹, and cross-coupling reactions²⁰⁴.

Safety

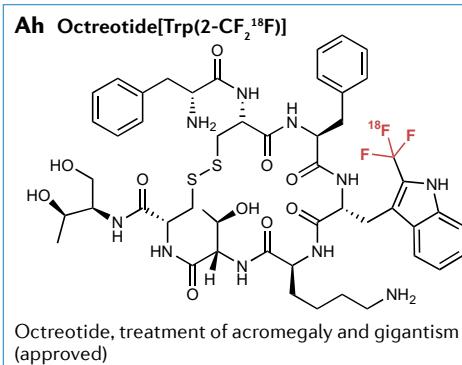
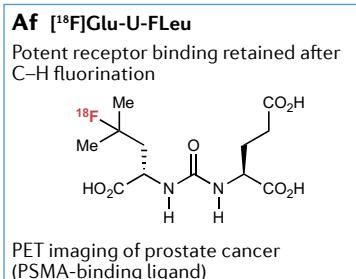
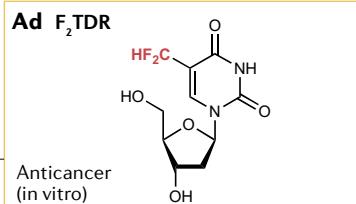
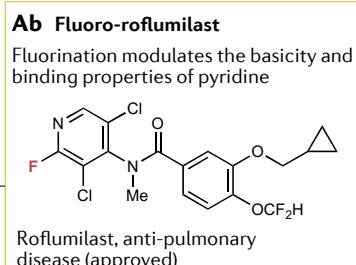
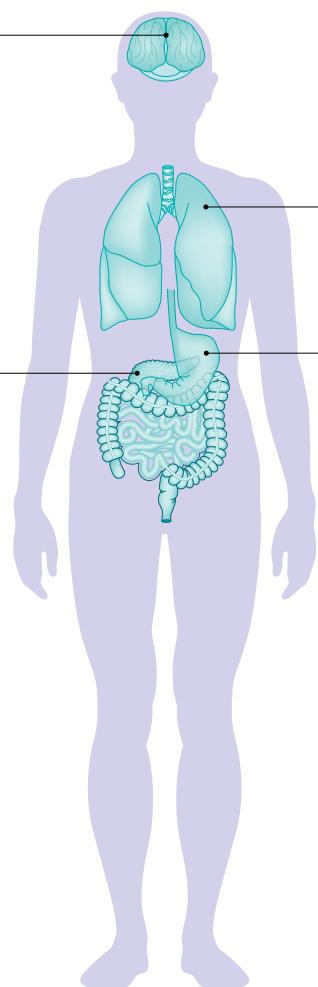
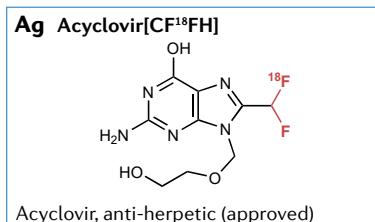
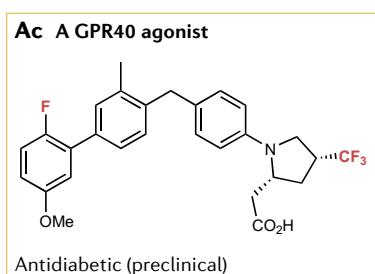
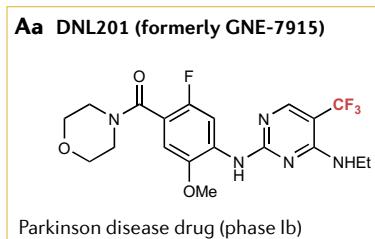
Safety is an important issue in synthetic organofluorine chemistry. In general, classical fluorination reagents such as anhydrous hydrogen fluoride (HF), elemental fluorine (F_2) and sulfur tetrafluoride (SF_4) are highly corrosive, toxic and, sometimes, even explosive chemicals. When handling these dangerous reagents, protective equipment such as safety goggles, an acid-resistant apron and gloves should be used and experiments should be performed under good ventilation conditions. Glassware should be avoided as these corrosive fluorination reagents readily etch glass. A fume hood fitted with a scrubbing system should be used when handling large quantities of anhydrous HF, as anhydrous and even dilute aqueous HF solutions are corrosive and rapidly damage tissues, owing to resorptive binding of fluoride to calcium and magnesium ions. Antidotes such as calcium gluconate gel should be kept on hand for primary treatment of HF burns of the skin²⁰⁵.

Modern fluorination and fluoroalkylation reagents are much milder and less dangerous than their classical counterparts. For most of the synthetic methods

described in this Primer, experiments can be carried out in a standard organic chemistry laboratory and the reaction set-up is generally no different from other organic reactions. However, some fluorination reagents such as HF–pyridine, HF– $3\text{Et}_3\text{N}$ and DAST are corrosive and precautions should be taken when handling these chemicals. For ^{18}F -labelled synthesis, a standard radiochemistry laboratory for handling radioactive chemicals is required.

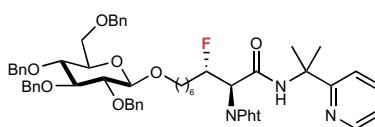
Applications

In this section, we provide an introductory overview of how the above fluorination and fluoroalkylation methods are currently used in life science-related areas (FIG. 10). We initially focus on the application of these methods to drug discovery and development, including the late-stage modification of approved drugs or bioactive molecules and the synthesis of novel drug candidates. We then discuss the recent field of ^{18}F radiolabelling, the products of which are used for disease diagnosis, treatment monitoring and mechanism research. Finally, we introduce the application of these methods to bioorganic chemistry research and the pharmaceutical and agrochemical industries.

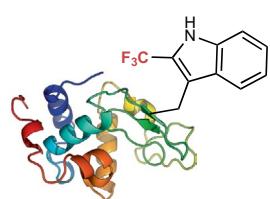








Drug discovery

More than 300 fluorinated drugs have been developed and used worldwide following the introduction of fludrocortisone as the first fluorine-containing pharmaceutical drug in 1954 (REF.²⁰⁶). Fluorination of drug molecules can enhance their efficacy by modulating their absorption, distribution, metabolism and excretion profile, and fluorination and fluoroalkylation have therefore become a routine and powerful tool in drug discovery^{3–6,8–10,13,25}.

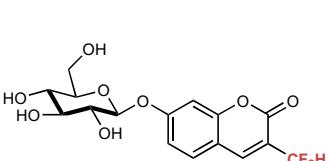
Fluorination. C–H fluorination and ^{18}F radiofluorination are at an early stage of research and their use in the late-stage functionalization of drug molecules in the context of drug discovery is still in its infancy, owing to numerous challenges such as difficulties in separating fluorinated derivatives from precursor molecules and achieving high chemoselectivity, regioselectivity and stereoselectivity⁴⁹. Despite these challenges, these techniques have been successfully used to synthesize fluorinated analogues of a handful of natural products and US Food and Drug Administration (FDA)-approved pharmaceuticals. In 2012, oxidative aliphatic C–H fluorination using nucleophilic fluoride was applied to the selective fluorination of terpenoids such as sclareolide and steroids such as 5α -androstan-17-one (REF.⁶⁶). Fluorinated analogues of these natural products have also been accessed through a complementary radical-based approach using a decatungstate photocatalyst²⁰⁷. The selective benzylic fluorination of dihydrocoumarin — a scaffold commonly found in bioactive natural products and drugs — was reported using a radical-based strategy⁶², and C–H fluorination of sugar derivatives was demonstrated using a site-selective and diastereoselective Pd^{II} -catalysed process⁶⁶ (FIG. 10Ba). Further, fluorinated variants of the antidiabetic pioglitazone and of roflumilast — a drug used to treat chronic

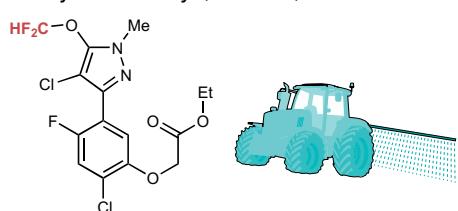

PRIMER

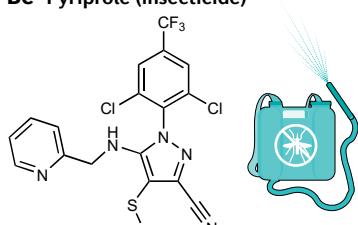
A



B


Ba Fluorinated glyco-amino acid derivative


Bb Trifluoromethylated lysozyme


Bc Fluorinated fluorogenic probe

Bd Pyraflufen-ethyl (herbicide)

Be Pyriproxyfen (insecticide)

◀ Fig. 10 | **Applications of synthetic organofluorine chemistry in life sciences.**

A | Applications of organofluorine chemistry in synthesis and modification of drugs, drug candidates, lead compounds and positron emission tomography (PET) imaging agents. Parts **Aa–Ad**, organofluorine compounds in different stages of drug development. For a full list of approved fluorinated drugs, refer to REF.²⁰⁶. Parts **Ae–Ah**, imaging agents synthesized using different methods. **B** | Example applications of organofluorine chemistry in the modification of natural products (part **Ba**), biomacromolecules (part **Bb**), bioactive small molecules (part **Bc**) and the production of agrochemicals (parts **Bd** and **Be**). For a full list of approved agrochemicals, see REF.⁷. F_2 TDR, 2-deoxy-5-difluoromethyluridine; GPR40, G-protein-coupled receptor 40; PSMA, prostate-specific membrane antigen.

obstructive pulmonary disease — were synthesized through selective *ortho* fluorination of pyridines with AgF_2 (REF.⁷³) (FIG. 10Ab).

Trifluoromethylation. As a bioisostere of a chloride or methyl group, the trifluoromethyl group is often used to adjust the steric and electronic properties of a biologically active molecule or to protect a reactive methyl group from metabolic oxidation^{208,209}. Various trifluoromethylation methods have been widely used for the synthesis of CF_3 -containing biologically active molecules in the development of drugs and agrochemicals. The copper-promoted coupling reaction of aryl or alkenyl halides is one of the preferred strategies for the construction of a $C(sp^2)$ – CF_3 bond owing to its low cost and high site-selectivity and the convenience of upscaling. The compound GNE-7915 — a potent, selective, metabolically stable and brain-penetrant small-molecule inhibitor of leucine-rich repeat kinase 2 (LRRK2)²¹⁰ — contains a CF_3 -pyrimidine motif that can be constructed through a copper-promoted coupling reaction on a molar scale (FIG. 10Aa). Alkyl- CF_3 moieties may also be installed using other trifluoromethylation methods; for example, nucleophilic trifluoromethylation was used to synthesize a G-protein-coupled receptor 40 (GPR40) agonist, in which the CF_3 group increases the inhibition constant of the drug with respect to its binding to human GPR40 and improves agonist efficacy²¹¹ (FIG. 10Ac).

Difluoromethylation. CF_2H is a lipophilic bioisostere of hydroxyl and methyl groups and can serve as a weak hydrogen bond donor; it can therefore be used to improve the binding ability or metabolic stability of biologically active molecules²⁰⁹. Many recently developed carbon difluoromethylation methods have shown potential for the late-stage modification of pharmaceuticals and complex molecules, both through C–H difluoromethylation^{132,139,161,164,166,173,176,212–215} and the substitution of pre-functionalized groups such as halogen^{146,148,152}, carboxyl^{131,150}, hydroxyl¹⁶¹ and amino^{144,149} groups with CF_2H . Direct C–H radical difluoromethylation of heterocycles with difluoromethanesulfinate salts is arguably the most significant achievement in this field; together with alkanesulfinate chemistry, this technique has found immediate application in drug discovery owing to its simplicity, the high tolerance towards functional groups and the predictability of site selectivity²¹⁶. The introduction of a CF_2H group into deoxyuridine with HCF_2SO_2Na has led to the discovery of 2-deoxy-5-difluoromethyluridine (F_2 TDR) (FIG. 10Ad), a difluorinated analogue of the FDA-approved cancer

drug trifluridine with an enhanced capacity to inhibit tumour cell proliferation¹⁶⁶.

Monofluoromethylation. Existing examples of CH_2F -containing molecules are typically made through classical nucleophilic substitution chemistry. To date, contemporary C–H monofluoromethylation reactions have not been reported in drug development programmes, aside from a single demonstration of the use of fluoroiodomethane and a base for the electrophilic C–H monofluoromethylation of androstane derivatives¹⁹¹.

Radiolabelling

The translation of fluorination to radiofluorination and the use of ^{18}F -containing molecules in PET represents a major application for fluorination techniques²¹⁷. PET is a powerful imaging technique that uses positron-emitting radiotracers to gather quantitative information on metabolic processes, allowing for the early diagnosis of diseases such as cancer. PET requires the development of suitable radiopharmaceuticals that can accumulate in the human body and be detected by the PET scan. The radioisotope ^{18}F ($t_{1/2} = 109$ min) is ideal for use in PET radiopharmaceuticals as it has a clean positron emission profile and its maximal positron energy is well suited for high-resolution imaging. For these reasons, radiochemists are invested in developing new methodologies to efficiently produce ^{18}F -containing radiopharmaceuticals.

^{18}F fluorination. C–H ^{18}F radiofluorination is an emerging field with only a few existing examples. ^{18}F variants of natural products and some top-selling drug derivatives were elegantly accessed using a variant of the method used for Mn^{III} -catalysed nucleophilic ^{19}F fluorination⁶⁸. Some reports have also accessed ^{18}F radiotracers through late-stage C–H fluorinations, including in the automated synthesis of the retinoic acid receptor β -agonist [^{18}F]AC261066 — which employed a Cu^1 promoter⁵³ (FIG. 10Ae) — and radical-based ^{18}F labelling of leucine derivatives²¹⁸ (FIG. 10Af).

^{18}F trifluoromethylation. Most radiofluorination efforts have focused on the development of ^{18}F trifluoromethylation methods to support PET imaging experiments in animal models. The coupling of a $[CuCF_2^{18}F]$ complex is the most commonly used strategy for $CF_2^{18}F$ installation. The $[CuCF_2^{18}F]$ complex could be generated in situ from the combination of a Cu^1 salt, a difluorocarbene ($:CF_2$) source and $[^{18}F]$ fluoride²¹⁹ or the combination of a Cu^1 salt, preformed $[^{18}F]$ fluoroform ($HCF_2^{18}F$) and a base^{220–222}. Recently, a $:CF_2/^{18}F^-$ system was used to develop a Langlois-type ^{18}F labelling reagent ($CF_2^{18}FSO_2NH_4$) that enables radical C–H ^{18}F trifluoromethylation of aromatic residues in peptides²²³. Interestingly, the same research group also developed a fully automated radiosynthesis of octreotide[Trp(2- $CF_2^{18}F$)] using the Advion NanoTek microfluidic synthesis system²²³ (FIG. 10Ah). A preliminary *in vivo* PET imaging experiment using this labelling peptide on naive rats suggested that this complex is cleared from the body by urinary excretion and through the gastrointestinal tract, facilitating the

measurement of the distribution and pharmacokinetics of octreotide *in vivo*.

¹⁸F difluoromethylation. Direct ¹⁸F difluoromethylation is more challenging than direct ¹⁸F trifluoromethylation, owing to the difficulty in constructing the ¹⁸F difluoromethylation reagent. Inspired by the radical difluoromethylation reagent difluoromethyl 2-benzo-[*d*] thiazolyl sulfone (2-*BT*SO₂CF₂H) (REF. ¹⁸⁶), a new reagent, 2-*BT*SO₂CF¹⁸FH, was prepared in two steps and successfully applied for C–H ¹⁸F difluoromethylation of a broad range of *N*-heteroaromatics, including drug molecules such as the antiviral medication acyclovir²¹² (FIG. 10Ag).

¹⁸F monofluoromethylation. No examples of C–H ¹⁸F monofluoromethylation have been reported thus far, although [¹⁸F]fluoromethyl halides have been prepared and used in the electrophilic ¹⁸F fluoromethylation of N nucleophiles, O nucleophiles and S nucleophiles for their potential application in PET imaging^{224–226}. Additionally, [¹⁸F]FCH₂X reagents (where X = Br or I) have been used in palladium-catalysed cross-couplings with boronic acids to generate ¹⁸F-radiolabelled (hetero)arenes²²⁷. [¹⁸F]Fluoromethyl halides are readily synthesized from CH₂X₂ (X = I or Br) through halide-exchange reactions with a [¹⁸F]fluoride salt^{224–226}; for example, in acetonitrile at reflux, the halide exchange²²⁵ of dibromofluoromethane with [¹⁸F]KF and Kryptofix 222 — a cryptand that complexes potassium — affords [¹⁸F]FCH₂Br in excellent radiochemical yield (47 ± 8%, *n* = 20)²²⁵. Furthermore, a second halide-exchange reaction of [¹⁸F]FCH₂Br with silver triflate delivers the corresponding ¹⁸F-radiolabelled triflate. These established procedures should inspire the use of C–H ¹⁸F monofluoromethylation approaches and the development of new ¹⁸F monofluoromethylation reagents. Notably, ≈60% of all FDA-approved drugs contain at least one heterocycle, with pyridine being among the most common²²⁸; thus, the preparation of [¹⁸F]MFMS would be of particular use for radiochemistry owing to its demonstrated regioselectivity when derivatizing medicinally relevant heterocycles, including pyridine and purine ring systems. Such an approach will require a marked reduction in the time required for the synthesis of MFMS (~4 days) for it to be compatible with the half-life of ¹⁸F (~110 min).

Bioorganic chemistry research

Radical C–H fluoroalkylation of native aromatic and heteroaromatic residues in peptides or proteins can facilitate their study using ¹⁹F nuclear magnetic resonance (NMR) analysis and potentially modulate their functions. Fluoroalkanesulfinate salts are the reagents of choice owing to their biocompatibility and the mildness of their reaction conditions²¹⁶. Selective trifluoromethylation of tyrosine (Tyr) residues in recombinant human insulin²²⁹ and tryptophan (Trp) residues in the enzyme lysozyme²³⁰ (FIG. 10Bb) have been achieved with CF₃SO₂Na. Trifluoromethylation modification of peptides and proteins provides a sensitive ¹⁹F NMR spectroscopic probe of the local environment in the biomacromolecules, while minimally perturbing their overall structure and enzymatic function.

Cryptand

A family of synthetic bicyclic and polycyclic multidentate ligands for a range of cations.

The application of difluoromethylation reactions in biological research has been showcased by the development of a novel quinone methide-based, self-immobilizing fluorogenic probe that allows the measurement of β-galactosidase activity in living cells²¹⁵ (FIG. 10Bc). Nucleophilic attack of a CF₂H group on the coumarin group of the probe by β-galactosidase activates fluorescence in the molecule and allows measurement of enzyme activity. The 3-difluoromethylated analogue of the probe, obtained through the one-step reaction of coumarin with HCF₂SO₂Na, was shown to have a higher fluorogenic response and improved fluorescence labelling efficiency over a previously developed 8-difluoromethylated analogue²¹⁵.

Pharmaceuticals and agrochemicals

In the production of pharmaceuticals and agrochemicals, fluorine and fluoroalkyl groups are usually introduced to intermediates at the early stage of the synthesis through the fluorination of pre-functionalized precursors or transformation of fluoroalkyl-containing building blocks, respectively^{7,206}. An exception is electrophilic difluoromethylation with difluorocarbene, which has been widely applied in early-stage and late-stage difluoromethylation^{4,8,231–235}. This is possible owing to the high reactivity of difluorocarbene towards heteroatom nucleophiles and soft carbon nucleophiles and the low cost of difluorocarbene sources such as HCF₂Cl. Pharmaceuticals and agrochemicals synthesized using this electrophilic difluoromethylation method include the aforementioned anti-pulmonary disease drug roflumilast⁴ (FIG. 10Ab), pantoprazole — a drug employed for the treatment of gastroesophageal reflux disease⁸ — the herbicide pyraflufen-ethyl²³³ (FIG. 10Bd) and the insecticide pyriproxyfen²³⁵ (FIG. 10Be), among others.

Reproducibility and data deposition

Reproducibility

All of the fluorination and fluoroalkylation methods highlighted in this Primer should be reproducible by virtue of the fact that they have been published in peer-reviewed journals with detailed experimental procedures and adequate analytical and characterization data. However, most methods have emerged in the past 10–15 years and have only been demonstrated on small (millimolar) scales. More studies will be needed to fully evaluate reproducibility issues and assess the potential of these synthetic methods following process scale-up. For any given transition-metal catalysed fluorination or fluoroalkylation reaction, the commercially available starting materials are used as received from the laboratory chemical suppliers and organic solvents are pre-dried to remove trace water, unless otherwise noted in the original literature. The reaction is usually conducted using standard laboratory equipment under the protection of an inert atmosphere, such as argon or nitrogen.

For nucleophilic fluoroalkylations using fluoroalkyl metal reagents that are generated *in situ* by deprotection or halogen–lithium exchange, low temperatures (such as –78 °C) are required to avoid thermal decomposition²². The radical C–H fluoroalkylation of (hetero)aromatics with fluoroalkanesulfinate salts can be

Atom economy

The conversion efficiency of a chemical process in terms of all atoms involved and the desired products produced.

performed under open air without an organic co-solvent and in the presence of extensive impurities in the reaction medium; however, portion-wise addition of large excess amounts of the reagents are usually needed to achieve a high yield²¹⁶.

The synthesis of PET tracers requires high levels of reproducibility and applicability to biological studies and clinical applications²³⁶. These syntheses should be efficient (non-decay corrected radiochemical yield of 5–40%) and timeframes should be compatible with the short half-life of ¹⁸F (~110 min). Products should be manufactured using automated synthesis, obtained in high radiochemical purity, have sufficient specific radioactivity for imaging ($\geq 8 \text{ MBq kg}^{-1}$) and must be produced in a form acceptable to regulatory bodies²³⁷. The latter requirement is valid for all pharmaceuticals and involves using good manufacturing practices so that clinical products are produced consistently and controlled according to quality standards. Good manufacturing practices cover all aspects of production including raw materials, equipment and personnel training. Different countries and authorities have their own good manufacturing practice guidelines aiming to ensure high reproducibility, quality and safety of the finished product²³⁸.

Following the general standard for reporting organic synthesis, all new small-molecule chemical products should be characterized using ¹H NMR and ¹³C NMR spectroscopy, and high-resolution mass spectroscopy analysis, with results reported in publications, either in the main text or in the electronic supporting information. ¹⁹F NMR data should also be provided to support the incorporation of the desired fluorinated moieties. Inexperienced chemists can refer to an elegant book on fluorine NMR to interpret the ¹H, ¹³C and ¹⁹F NMR data of organofluorine compounds²³⁹. In the case of ¹⁸F labelling, the ¹⁹F-substituted analogue should be synthesized as a standard sample for characterization and high-performance liquid chromatography analysis. For the modification of biomacromolecules, the ¹⁹F NMR yield is used to assess the efficiency of fluorine incorporation.

Limitations and optimizations**Fluorination**

The direct fluorination of C–H bonds represents an ideal solution for late-stage fluorinations; however, it also presents unique challenges⁴⁹. The similar steric parameters and chromatographic behaviour of the precursor and the fluorinated product can cause purification issues if the reaction does not reach full conversion. In many cases, the product has a reactivity profile similar to the starting material; preventing polyfluorination is therefore difficult and overfluorinated products are common. However, some reports have shown the ability to favour monofluorination over difluorination by carefully modifying the reaction conditions^{39,51}. A further issue is that C–H oxygenation side products can be formed when carboxylic acid additives are required in the catalytic system or when nucleophilic sources are combined with hypervalent iodine reagents bearing oxygenated substituents.

As elegant as the C–H fluorination approach can be, it strongly relies on state-of-the-art methodologies that require the full consumption of starting material, easy purification of the product and simple scale-up. Yields of isolated products rather than yields determined by ¹⁹F NMR should be used to assess the synthetic utility of a protocol. C–H fluorination scale-up processes have emerged²⁴⁰ and future advances should consider safety issues, particularly when HF and its derivatives are employed. Cost and atom economy represent important parameters as the field is dominated by reagents that suffer from low atom economy and/or relatively high costs, such as Selectfluor, NFSI and silver fluorides. In the case of ¹⁸F radiolabelling, ¹⁸F-radiolabelled compounds have a very short half-life and should ideally be prepared and used on site; therefore, operational simplicity and automation are paramount and the ultimate aim is to change clinical practice with the availability of readily automated protocols.

Trifluoromethylation

Each trifluoromethylation method has its own limitations in terms of substrate scope, side reactions and potential for scaling up. The coupling reaction with a CuCF₃ complex can incorporate a CF₃ group into various molecules and may be easily scaled up; however, reaction selectivity can decrease as the electronic nature of the substrate is altered. For example, although aryl chlorides are usually inert and remain intact in coupling reactions, electron-deficient aryl chlorides can be trifluoromethylated. Therefore, attention must be paid to selectivity when substrates contain an active C–I or C–Br bond and a supposedly inert C–Cl bond. Small-scale radical trifluoromethylation reactions have found widespread use in drug and agrochemical development, although when scaling up radical reactions, issues of safety and reaction selectivity should be carefully considered as radicals are highly reactive and radical reactions are often exothermic processes. Lowering concentrations or adding reagents slowly can help reduce risk for large-scale radical reactions. Nucleophilic trifluoromethylation is usually limited to the synthesis of α -CF₃ amines, alcohols and ketones; further, reaction temperatures should be kept low in the synthesis of α -CF₃ ketones to avoid double trifluoromethylation and the formation of tertiary alcohols. Finally, electrophilic trifluoromethylation is limited to electron-rich molecules such as enolates and enamines, which can be generated *in situ* or prepared in advance. If substrates or trifluoromethylation reagents are not reactive enough, the use of Lewis acids may be necessary.

Difluoromethylation

Carbon difluoromethylation can introduce a CF₂H group at an early stage or a late stage and has undoubtedly facilitated the design and discovery of difluoromethylated functional molecules with novel or improved properties. However, some problems must be addressed in terms of both chemistry and practical applications. The control of stereoselectivity at the difluoromethylated *sp*³ carbon mainly depends on diastereoselective nucleophilic difluoromethylation reactions with either chiral

substrates or chiral reagents²², whereas enantioselective difluoromethylation remains a challenging synthetic task⁴⁵. Further, ·CF₂H prefers reacting with relatively electron-deficient π-systems including heteroarenes owing to its nucleophilic profile; therefore, direct radical C–H difluoromethylation of electron-rich arenes is usually problematic, although reports have shown that the use of electrophilic surrogates such as CF₂SO₂Ph and ·CF₂Cl can overcome this limitation^{170,171}.

The practical application of difluoromethylation methods by the medicinal chemistry community is highly dependent on the commercial availability and cost of difluoromethylation reagents and catalysts, and the simplicity of the experimental procedures. At present, popular carbon difluoromethylation reagents include the commercially available TMSCF₂H (REF. ¹²⁹), PhSO₂CF₂H (REF. ²²), (HCF₂SO₂)₂Zn (REF. ¹⁶⁴), (HCF₂SO₂)₂Na (REF. ¹³⁶) and 2-BTSO₂CF₃H (REF. ²²⁴), and the corresponding difluoromethylation protocols have been proved to be reproducible in many studies^{29,125–128}. However, most newly developed difluoromethylation methods are not practical for industrial application, owing to the high cost of reagents and metal catalysts². To reduce costs, recent research has begun to focus on the use of difluoromethylation reagents closely related to the fluorine industry^{144,152,160,167,168} and inexpensive base-metal catalysts such as nickel and iron^{151–156}.

Monofluoromethylation

Although electrophilic C–H monofluoromethylation provides a means for the α-monofluoromethylation of 1,3-dicarbonyl systems, there is limited evidence to suggest that these processes will translate to broader collections of carbon nucleophiles. Challenges of translating this approach to other systems include competitive O monofluoromethylation, which can represent the predominant product, and an intolerance to even mildly nucleophilic functional groups. Efforts are required to improve functional group compatibility and scope. The demonstration of radical C–H monofluoromethylation of heterocycles represents a critically important advance, although the adoption of this process for medicinal chemistry purposes or further expansion of substrate scope has yet to be described. The development of reactions involving the monofluoromethyl radical and, in particular, the use of this process for late-stage functionalization of heterocycles through Minisci-like processes requires further exploration to establish this strategy as a dependable tool for lead drug modification.

Outlook

The number of fluorine-containing drug candidates is steadily increasing^{2–6} and the selective fluorination and fluoroalkylation of organic molecules will continue to play an important role in the drug discovery and large-scale production of pharmaceuticals. Remarkable advances have been made in synthetic organofluorine chemistry during the past two decades, among which C–H fluorination and fluoroalkylation represent frontiers in the field^{241,242}. Ideal fluorination and fluoroalkylation methods should enable precise C–H fluorination and fluoroalkylation in a safe, practical, cost-effective

and environmentally benign manner². However, owing to cost considerations, the industry still favours classical fluorination methods in large-scale productions, such as the use of anhydrous HF, F₂, Freons or Halons, and innovative new methods are often only used in small-scale synthesis, for example in drug discovery. As a result, it seems paradoxical that although synthetic fluorine chemistry has been flourishing in academia during the past decade, the pharmaceutical industry still calls for action to develop practical fluorination and fluoroalkylation methods for large-scale synthesis². The synthesis of ¹⁸F-labelled radiotracers is in small-scale production, although ¹⁸F radiochemistry faces other challenges such as dealing with the short half-life of ¹⁸F and the necessity for translation to automated platforms for clinical applications. To address the above call for action², new fluorination and fluoroalkylation methods and manufacturing technologies need to be developed for practical synthesis by choosing cost-effective reagents and/or catalysts in an environmentally responsible way. Readily available fluorine sources, such as simple inorganic fluorides and organic fluorides, and non-noble metal catalysts or organocatalysts should be preferentially used in synthesis. These new methods need to tolerate heterocycles and other common functional groups and give the desired fluorinated products in high yields for ease of purification. Asymmetric synthesis of organofluorine compounds is also of high importance and should receive special attention.

In the next decade, we expect that the number of transition metal-catalysed fluorination and fluoroalkylation reactions will continue to grow, owing to their diverse reactivity and tunable selectivity. Fluorination and fluoroalkylation reactions involving radical intermediates, especially visible light-promoted catalytic reactions, are expected to further flourish, and these radical reactions should find industrial applications with the development of new reaction engineering techniques. The design and development of new fluorination and fluoroalkylation reagents will add new tools to the synthetic toolbox and enable the construction and introduction of other useful fluorinated functionalities such as SF₅, OCF₃ and 'C₄F₉'. The incorporation of synthetic biology techniques into synthetic fluorine chemistry, such as the use of enzymatic fluorination and fluoroalkylation strategies, could pave the way for environmentally friendly fluorinations and fluoroalkylations. We also anticipate that electrochemistry will play a major role in facilitating the late-stage installation of a fluorine substituent. ¹⁸F labelling technologies are also expected to reach new heights with the development of novel PET imaging agents. More generally, it is likely that the field will expand with further development of site-selective functionalization of biological molecules, such as the functionalization of proteins with fluorine or fluoroalkyl motifs²⁴³. The combination of synthetic fluorine chemistry with artificial intelligence might lead to exciting opportunities for the smart synthesis of organofluorine compounds. Artificial intelligence could be used to design reaction schemes, optimize reaction conditions and control organic synthesis robots to develop novel fluorinated materials.

In addition to their use in the pharmaceutical industry, selective fluorination and fluoroalkylation reactions find important applications in the agrochemical industry. The production scale of agrochemicals for crop protection is usually larger than that of pharmaceuticals; however, agrochemicals are much more cost-sensitive. As a result, cost-effective fluorination and fluoroalkylation methods are more likely to be used in the large-scale production of crop protection agents. Further, fluorination and fluoroalkylation reactions promise to find

wide applications in the development of new fluorinated functional materials, such as fluorinated liquid crystals, fluorinated anti-fingerprint coatings and fluorinated plastics and rubbers, among others. The development of new fluorination and fluoroalkylation methods will also likely stimulate innovations in fluorinated refrigerants and fluorinated polymers, which have great importance in our everyday lives.

Published online: 08 July 2021

1. Cottet, F., Marull, M., Lefebvre, O. & Schlosser, M. Recommendable routes to trifluoromethyl-substituted pyridine- and quinolincarboxylic acids. *Eur. J. Org. Chem.* **2005**, 1559–1568 (2005).
2. Caron, S. Where does the fluorine come from? A review on the challenges associated with the synthesis of organofluorine compound. *Org. Process. Res. Dev.* **24**, 470–480 (2020).
3. Zhou, Y. et al. Next generation of fluorine-containing pharmaceuticals, compounds currently in phase II–III clinical trials of major pharmaceutical companies: new structural trends and therapeutic areas. *Chem. Rev.* **116**, 422–518 (2016).
4. Wang, J. et al. Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001–2011). *Chem. Rev.* **114**, 2432–2506 (2014).
5. Gillis, E. P., Eastman, K. J., Hill, M. D., Donnelly, D. J. & Meanwell, N. A. Applications of fluorine in medicinal chemistry. *J. Med. Chem.* **58**, 8315–8359 (2015).
6. Swallow, S. Fluorine in medicinal chemistry. *Prog. Med. Chem.* **54**, 65–133 (2015).
7. Ogawa, Y., Tokunaga, E., Kobayashi, O., Hirai, K. & Shibata, N. Current contributions of organofluorine compounds to the agrochemical industry. *iScience* **23**, 101467 (2020). **This article comprehensively summarizes the fluorinated agrochemicals on the market.**
8. Bégué, J.-P. & Bonnet-Delpont, D. *Bioorganic and Medicinal Chemistry of Fluorine* (Wiley-Hoboken, 2008).
9. Ojima, I. (ed.) *Fluorine in Medicinal Chemistry and Chemical Biology* (Wiley-Blackwell, 2009).
10. Gouverneur, D. & Müller, K. (eds) *Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications* (Imperial College Press, 2012).
11. Deng, X. et al. Chemistry for positron emission tomography: recent advances in ^{11}C , ^{18}F , ^{13}N , and ^{15}O -labeling reactions. *Angew. Chem. Int. Ed.* **58**, 2580–2605 (2019).
12. O'Hagan, D., Schaffrath, C., Cobb, S. L., Hamilton, J. T. G. & Murphy, C. D. Biosynthesis of an organofluorine molecule. *Nature* **416**, 279–279 (2002).
13. Kirk, K. L. Fluorination in medicinal chemistry: methods, strategies, and recent developments. *Org. Process. Res. Dev.* **12**, 305–321 (2008).
14. Dumas, J. & Peligot, E. Ueber den Holzgeist und die verschiedenen ätherartigen Verbindungen, welche er bildet [German]. *Ann. Pharm.* **15**, 1–60 (1835).
15. Prakash, G. K. S. & Wang, F. in *Organic Chemistry: Breakthroughs and Perspectives* (eds Ding, K. & Dai, L.-X.) 413–476 (Wiley-VCH, 2012).
16. Banks, R. E., Sharp, D. W. A. & Tatlow, J. C. (eds) *Fluorine: The First Hundred Years (1886–1986)* (Elsevier, 1986).
17. Banks, R. E. (ed.) *Fluorine Chemistry at the Millennium. Fascinated by Fluorine* (Elsevier, 2000).
18. Hiyama, T. *Organofluorine Compounds: Chemistry and Applications* (Springer, 2000).
19. Chambers, R. D. *Fluorine in Organic Chemistry* (Blackwell, 2004).
20. Uneyama, K. *Organofluorine Chemistry* (Blackwell, 2006).
21. Kirsch, P. *Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications* 2nd ed. (Wiley-VCH, 2013).
22. Ni, C., Hu, M. & Hu, J. Good partnership between sulfur and fluorine: sulfur-based fluorination and fluoroalkylation reagents for organic synthesis. *Chem. Rev.* **115**, 765–825 (2015). **This article includes important references on fluorination and fluoroalkylation.**
23. Liu, Q., Ni, C. & Hu, J. China's flourishing synthetic organofluorine chemistry: innovations in the new millennium. *Nat. Sci. Rev.* **4**, 303–325 (2017).
24. Szpera, R., Moseley, D. F. J., Smith, L. B., Sterling, A. J. & Gouverneur, V. The fluorination of C–H bonds: developments and perspectives. *Angew. Chem. Int. Ed.* **58**, 14824–14848 (2019). **This article is a concise review on fluorination of C–H bonds.**
25. Yerien, D. E., Bonesi, S. & Postigo, A. Fluorination methods in drug discovery. *Org. Biomol. Chem.* **14**, 8398–8427 (2016).
26. Ni, C. & Hu, J. The unique fluorine effects in organic reactions: recent facts and insights into fluoroalkylations. *Chem. Soc. Rev.* **45**, 5441–5454 (2016).
27. Sather, A. C. & Buchwald, S. L. The evolution of Pd⁰/Pd¹⁺-catalyzed aromatic fluorination. *Acc. Chem. Res.* **49**, 2146–2157 (2016).
28. Champagne, P. A., Desroches, J., Hamel, J. D., Vandamme, M. & Paquin, J. F. Monofluorination of organic compounds: 10 years of innovation. *Chem. Rev.* **115**, 9073–9174 (2015).
29. Ma J.-A. & Cahard, D. (ed.) *Emerging Fluorinated Motifs: Synthesis, Properties, and Applications* Vol. 2 (Wiley-VCH, 2020).
30. Olah, G. A. et al. Synthetic methods and reactions. 63.1 Pyridinium poly(hydrogen fluoride) (30% pyridine–70% hydrogen fluoride): a convenient reagent for organic fluorination reactions. *J. Org. Chem.* **44**, 3872–3881 (1979).
31. Haufe, G. Triethylamine tritylhydrofluoride in synthesis. *J. Prakt. Chem./Chem. Ztg.* **338**, 99–113 (1996).
32. Okoromoba, O. E., Han, J., Hammond, G. B. & Xu, B. Designer HF-based fluorination reagent: highly regioselective synthesis of fluoroalkenes and gem-difluoromethylene compounds from alkynes. *J. Am. Chem. Soc.* **136**, 14381–14384 (2014).
33. Hu, W. L., Hu, X. G. & Hunter, L. Recent developments in the deoxyfluorination of alcohols and phenols: new reagents, mechanistic insights, and applications. *Synthesis* **49**, 4917–4930 (2017).
34. Liang, S., Hammond, G. B. & Xu, B. Hydrogen bonding: regulator for nucleophilic fluorination. *Chem. Eur. J.* **23**, 17850–17861 (2017).
35. Baudoux, J. & Cahard, D. in *Organic Reactions* 1–326 (Wiley, 2008).
36. Watson, D. A. et al. Formation of ArF from LPdAr(F): catalytic conversion of aryl triflates to aryl fluorides. *Science* **325**, 1661–1664 (2009).
37. Hull, K. L., Anani, W. Q. & Sanford, M. S. Palladium-catalyzed fluorination of carbon–hydrogen bonds. *J. Am. Chem. Soc.* **128**, 7134–7135 (2006).
38. Casitas, A., Canta, M., Solà, M., Costas, M. & Ribas, X. Nucleophilic aryl fluorination and aryl halide exchange mediated by a Cu^{II}/Cu^{III} catalytic cycle. *J. Am. Chem. Soc.* **133**, 19386–19392 (2011). **This article is a seminal work on copper-catalysed aromatic fluorination.**
39. Truong, T., Klimovica, K. & Daugulis, O. Copper-catalyzed, directing group-assisted fluorination of arene and heteroarene C–H bonds. *J. Am. Chem. Soc.* **135**, 9342–9345 (2013).
40. Rueda-Becerril, M. et al. Direct C–F bond formation using photoredox catalysis. *J. Am. Chem. Soc.* **136**, 2637–2641 (2014).
41. Ventre, S., Petronijevic, F. R. & Macmillan, D. W. C. Decarboxylative fluorination of aliphatic carboxylic acids via photoredox catalysis. *J. Am. Chem. Soc.* **137**, 5654–5657 (2015).
42. Beeson, T. D. & MacMillan, D. W. C. Enantioselective organocatalytic α -fluorination of aldehydes. *J. Am. Chem. Soc.* **127**, 8826–8828 (2005).
43. Wang, X., Lan, Q., Shirakawa, S. & Maruoka, K. Chiral bifunctional phase transfer catalysts for asymmetric fluorination of β -keto esters. *Chem. Commun.* **46**, 321–323 (2010).
44. Rauniar, V., Lackner, A. D., Hamilton, G. L. & Dean Toste, F. Asymmetric electrophilic fluorination using an anionic chiral phase-transfer catalyst. *Science* **334**, 1681–1684 (2011).
45. Yang, X., Wu, T., Phipps, R. J. & Toste, F. D. Advances in catalytic enantioselective fluorination, mono-, di-, and trifluoromethylation, and trifluoromethylthiolation reactions. *Chem. Rev.* **115**, 826–870 (2015).
46. Pupo, G. et al. Asymmetric nucleophilic fluorination under hydrogen bonding phase-transfer catalysis. *Science* **360**, 638–642 (2018). **This article provides a conceptually novel method for asymmetric nucleophilic fluorination.**
47. Pupo, G. et al. Hydrogen bonding phase-transfer catalysis with potassium fluoride: enantioselective synthesis of β -fluoroamines. *J. Am. Chem. Soc.* **141**, 2878–2883 (2019).
48. Roagna, G. et al. Hydrogen bonding phase-transfer catalysis with ionic reactants: enantioselective synthesis of γ -fluoroamines. *J. Am. Chem. Soc.* **142**, 14045–14051 (2020).
49. Neumann, C. N. & Ritter, T. Late-stage fluorination: fancy novelty or useful tool? *Angew. Chem. Int. Ed.* **54**, 3216–3221 (2015).
50. Furuya, T. et al. Mechanism of C–F reductive elimination from palladium(IV) fluorides. *J. Am. Chem. Soc.* **132**, 3793–3807 (2010).
51. Chan, K. S. L., Wasa, M., Wang, X. & Yu, J. Q. Palladium(II)-catalyzed selective monofluorination of benzoic acids using a practical auxiliary: a weak-coordination approach. *Angew. Chem. Int. Ed.* **50**, 9081–9084 (2011).
52. Lou, S. J., Xu, D. Q. & Xu, Z. Y. Mild and versatile nitrate-promoted C–H bond fluorination. *Angew. Chem. Int. Ed.* **53**, 10330–10335 (2014).
53. Lee, S. J., Makaravage, K. J., Brooks, A. F., Scott, P. J. H. & Sanford, M. S. Copper-mediated aminoquinoline-directed radiofluorination of aromatic C–H bonds with K¹⁸F. *Angew. Chem. Int. Ed.* **131**, 3151–3154 (2019).
54. Zhao, S.-B., Becker, J. J. & Gagné, M. R. Steric crowding makes challenging C(sp³)–F reductive eliminations feasible. *Organometallics* **30**, 3926–3929 (2011).
55. Racowski, J. M., Gary, J. B. & Sanford, M. S. Carbon(sp³)–fluorine bond-forming reductive elimination from palladium(IV) complexes. *Angew. Chem. Int. Ed.* **51**, 3414–3417 (2012).
56. Zhang, Q., Yin, X. S., Chen, K., Zhang, S. Q. & Shi, B. F. Stereoselective synthesis of chiral β -fluoro α -amino acids via Pd(II)-catalyzed fluorination of unactivated methylene C(sp³)–H bonds: scope and mechanistic studies. *J. Am. Chem. Soc.* **137**, 8219–8226 (2015).
57. Zhu, R. Y. et al. Ligand-enabled stereoselective β -C(sp³)–H fluorination: synthesis of unnatural enantioanti- β -fluoro- α -amino acids. *J. Am. Chem. Soc.* **137**, 7067–7070 (2015).
58. Liao, G., Zhang, T., Lin, Z.-K. & Shi, B.-F. Transition metal-catalyzed enantioselective C–H functionalization via chiral transient directing group strategies. *Angew. Chem. Int. Ed.* **59**, 19773–19786 (2020).
59. Park, H., Verma, P., Hong, K. & Yu, J. Q. Controlling Pd(IV) reductive elimination pathways enables Pd(II)-catalyzed enantioselective C(sp³)–H fluorination. *Nat. Chem.* **10**, 755–762 (2018).
60. Braun, M. G. & Doyle, A. G. Palladium-catalyzed allylic C–H fluorination. *J. Am. Chem. Soc.* **135**, 12990–12993 (2013).
61. Rueda-Becerril, M. et al. Fluorine transfer to alkyl radicals. *J. Am. Chem. Soc.* **134**, 4026–4029 (2012).
62. Bloom, S. et al. A polycomponent metal-catalyzed aliphatic, allylic, and benzyllic fluorination. *Angew. Chem. Int. Ed.* **51**, 10580–10583 (2012).
63. Danahy, K. E., Cooper, J. C. & Van Humbeck, J. F. Benzyllic fluorination of aza-heterocycles induced by single-electron transfer to selectfluor. *Angew. Chem. Int. Ed.* **130**, 5228–5232 (2018).

64. Meanwell, M., Nodwell, M. B., Martin, R. E. & Britton, R. A convenient late-stage fluorination of pyridyl C–H bonds with *N*-fluorobenzenesulfonyl imide. *Angew. Chem. Int. Ed.* **55**, 13244–13248 (2016).

65. Bower, J. K., Cypcar, A. D., Henriquez, B., Stieber, S. C. E. & Zhang, S. C(sp^3)-H fluorination with a copper(II)/(III) redox couple. *J. Am. Chem. Soc.* **142**, 8514–8521 (2020).

66. Liu, W. et al. Oxidative aliphatic C–H fluorination with fluoride ion catalyzed by a manganese porphyrin. *Science* **337**, 1322–1325 (2012).

67. Liu, W. & Groves, J. T. Manganese-catalyzed oxidative benzylic C–H fluorination by fluoride ions. *Angew. Chem. Int. Ed.* **52**, 6024–6027 (2013).

68. Huang, X. et al. Late stage benzylic C–H fluorination with [18 F]fluoride for PET imaging. *J. Am. Chem. Soc.* **136**, 6842–6845 (2014).

69. Groenlyke, B. J., Abusalmi, D. I. & Cook, S. P. Iron-catalyzed, fluoroamide-directed C–H fluorination. *J. Am. Chem. Soc.* **138**, 12771–12774 (2016).

70. Xia, J. B., Zhu, C. & Chen, C. Visible light-promoted metal-free C–H activation: diarylketone-catalyzed selective benzylic mono- and difluorination. *J. Am. Chem. Soc.* **135**, 17494–17500 (2013).

71. Nodwell, M. B. et al. 18 F-Fluorination of unactivated C–H bonds in branched aliphatic amino acids: direct synthesis of oncological positron emission tomography imaging agents. *J. Am. Chem. Soc.* **139**, 3595–3598 (2017).

72. Yuan, Z. et al. Site-selective, late-stage C–H 18 F-fluorination on unprotected peptides for positron emission tomography imaging. *Angew. Chem. Int. Ed.* **130**, 12915–12918 (2018).

73. Fier, P. S. & Hartwig, J. F. Selective C–H fluorination of pyridines and diazines inspired by a classic amination reaction. *Science* **342**, 956–960 (2013).

74. Yamamoto, K. et al. Palladium-catalyzed electrophilic aromatic C–H fluorination. *Nature* **554**, 511–514 (2018).

75. Alonso, C., Martínez de Marigorta, E., Rubiales, G. & Palacios, F. Carbon trifluoromethylation reactions of hydrocarbon derivatives and heteroarenes. *Chem. Rev.* **115**, 1847–1935 (2015).

76. Hu, W.-Q., Pan, S., Xu, X.-H., Vivic, D. A. & Qing, F.-L. Nickel-mediated trifluoromethylation of phenol derivatives by aryl C–O bond activation. *Angew. Chem. Int. Ed.* **59**, 16076–16082 (2020).

77. Meucci, E. A. et al. Nickel(IV)-catalyzed C–H trifluoromethylation of (hetero)arenes. *J. Am. Chem. Soc.* **141**, 12872–12879 (2019).

78. Cho, E. J. et al. The palladium-catalyzed trifluoromethylation of aryl chlorides. *Science* **328**, 1679–1681 (2010). **This article describes the trifluoromethylation of aryl chlorides via a Pd^0/Pd^1 catalytic cycle.**

79. Li, C.-B., Zhang, C., Song, C. & Ma, Y.-D. Progress in copper-catalyzed trifluoromethylation. *Beilstein J. Org. Chem.* **14**, 155–181 (2018).

80. Zeng, Y. et al. Silver-mediated trifluoromethylation–iodination of arynes. *J. Am. Chem. Soc.* **135**, 2955–2958 (2013).

81. Gonda, Z. et al. Efficient copper-catalyzed trifluoromethylation of aromatic and heteroaromatic iodides: the beneficial anchoring effect of borates. *Org. Lett.* **16**, 4268–4271 (2014).

82. Hu, M., Ni, C. & Hu, J. Copper-mediated trifluoromethylation of α -diazo esters with $TMSF_3$: the important role of water as a promoter. *J. Am. Chem. Soc.* **134**, 15257–15260 (2012).

83. Chu, L. & Qing, F.-L. Copper-mediated oxidative trifluoromethylation of boronic acids. *Org. Lett.* **12**, 5060–5063 (2010).

84. Chen, Q.-Y. & Wu, S.-W. Methyl fluorosulphonyldifluoroacetate: a new trifluoromethylating agent. *J. Chem. Soc. Chem. Commun.* <https://doi.org/10.1039/C39890000705> (1989). **This article is the first description of methyl fluorosulphonyldifluoroacetate, which has proved to be an efficient trifluoromethylation reagent; copper-mediated trifluoromethylation using this reagent can be scaled up to kilograms.**

85. Clarke, S. L. & McGlacken, G. P. Methyl fluorosulfonyldifluoroacetate (MFSDA): an underutilised reagent for trifluoromethylation. *Chem. Eur. J.* **23**, 1219–1230 (2017).

86. Xie, Q. & Hu, J. Chen's reagent: a versatile reagent for trifluoromethylation, difluoromethylation, and difluoroalkylation in organic synthesis. *Chin. J. Chem.* **38**, 202–212 (2020).

87. Knauber, T., Arikian, F., Roesenthaler, G.-V. & Gooßen, L. J. Copper-catalyzed trifluoromethylation of aryl iodides with potassium (trifluoromethyl) trimethoxyborate. *Chem. Eur. J.* **17**, 2689–2697 (2011).

88. Zanardi, A., Novikov, M. A., Martin, E., Benet-Buchholz, J. & Grushin, V. V. Direct cupration of fluoroform. *J. Am. Chem. Soc.* **133**, 20901–20913 (2011).

89. Novák, P., Lishchynskyi, A. & Grushin, V. V. Fluoroform-derived $CuCF_3$ for low-cost, simple, efficient, and safe trifluoromethylation of aryl boronic acids in air. *Angew. Chem. Int. Ed.* **51**, 7767–7770 (2012).

90. Zhang, C.-P. et al. Copper-mediated trifluoromethylation of heteroaromatic compounds by trifluoromethyl sulfonum salts. *Angew. Chem. Int. Ed.* **50**, 1896–1900 (2011). **This study describes a trifluoromethylation method that has found valuable applications in drug development.**

91. Dai, J.-J. et al. Copper-promoted Sandmeyer trifluoromethylation reaction. *J. Am. Chem. Soc.* **135**, 8436–8439 (2013).

92. Morimoto, H., Tsubogo, T., Litvinas, N. D. & Hartwig, J. F. A broadly applicable copper reagent for trifluoromethylations and perfluoroalkylations of aryl iodides and bromides. *Angew. Chem. Int. Ed.* **50**, 3793–3798 (2011).

93. Morstein, J., Hou, H., Cheng, C. & Hartwig, J. F. Trifluoromethylation of arylsilanes with $[{^{18}F}Cu]CF_3$. *Angew. Chem. Int. Ed.* **55**, 8054–8057 (2016).

94. Tomashenko, O. A., Escudero-Adan, E. C., Belmonte, M. M. & Grushin, V. V. Simple, stable, and easily accessible well-defined $CuCF_3$ aromatic trifluoromethylating agents. *Angew. Chem. Int. Ed.* **50**, 7655–7659 (2011).

95. Paeth, M. et al. Csp^3 – Csp^3 bond-forming reductive elimination from well-defined copper(III) complexes. *J. Am. Chem. Soc.* **141**, 3153–3159 (2019).

96. Hu, Z. et al. A key intermediate in copper-mediated arene trifluoromethylation, $[{^{18}Bu_4N}]Cu(Ar)(CF_3)_2$: synthesis, characterization, and $C(sp^2)$ – CF_3 reductive elimination. *Angew. Chem. Int. Ed.* **58**, 8510–8514 (2019).

97. Liu, S. et al. $C(sp^3)$ – CF_3 reductive elimination from a five-coordinate neutral copper(III) complex. *J. Am. Chem. Soc.* **142**, 9785–9791 (2020).

98. Zhang, C. Application of Langlois' reagent in trifluoromethylation reactions. *Adv. Synth. Catal.* **356**, 2895–2906 (2014).

99. Wu, X., Chu, L. & Qing, F. L. Silver-catalyzed hydrotrifluoromethylation of unactivated alkenes with CF_3SiMe_3 . *Angew. Chem. Int. Ed.* **52**, 2198–2202 (2013).

100. Wang, S.-M., Han, J.-B., Zhang, C.-P., Qin, H.-L. & Xiao, J.-C. An overview of reductive trifluoromethylation reactions using electrophilic CF_3 reagents. *Tetrahedron* **71**, 7949–7976 (2015).

101. Charpentier, J., Früh, N. & Togni, A. Electrophilic trifluoromethylation by use of hypervalent iodine reagents. *Chem. Rev.* **115**, 650–668 (2015).

102. Iqbal, N., Jung, J., Park, S. & Cho, E. J. Controlled trifluoromethylation reactions of alkynes through visible-light photoredox catalysis. *Angew. Chem. Int. Ed.* **53**, 539–542 (2014).

103. Merino, E. & Nevado, C. Addition of CF_3 across unsaturated moieties: a powerful functionalization tool. *Chem. Soc. Rev.* **43**, 6598–6608 (2014).

104. Egami, H. & Sodeoka, M. Trifluoromethylation of alkenes with concomitant introduction of additional functional groups. *Angew. Chem. Int. Ed.* **53**, 8294–8308 (2014).

105. Zhu, L., Fang, Y. & Li, C. Trifluoromethylation of alkyl radicals: breakthrough and challenges. *Chin. J. Chem.* **38**, 787–789 (2020).

106. Prakash, G. K. S. & Mandal, M. Nucleophilic trifluoromethylation tamed. *J. Fluor. Chem.* **112**, 123–131 (2001). **This article details the synthetic utilities of a commonly used nucleophilic trifluoromethylation reagent, $TMSF_3$.**

107. Prakash, G. K. S. & Yudin, A. K. Perfluoroalkylation with organosilicon reagents. *Chem. Rev.* **97**, 757–786 (1997).

108. Umemoto, T. & Ishihara, S. Power-variable electrophilic trifluoromethylating agents. S-, Se-, and Te-(trifluoromethyl)dibenzothio-, -seleno-, and -tellurophenium salt system. *J. Am. Chem. Soc.* **115**, 2156–2164 (1993).

109. Matsnev, A. et al. Efficient access to extended Yagupolskii–Umemoto-type reagents: triflic acid catalyzed intramolecular cyclization of *ortho*-ethynylaryltrifluoromethylsulfanes. *Angew. Chem. Int. Ed.* **49**, 572–576 (2010).

110. Wang, X., Truesdale, L. & Yu, J.-Q. Pd(II)-catalyzed *ortho*-trifluoromethylation of arenes using TFA as a promoter. *J. Am. Chem. Soc.* **132**, 3648–3649 (2010).

111. Zhang, X.-G., Dai, H.-X., Wasa, M. & Yu, J.-Q. Pd(II)-catalyzed *ortho* trifluoromethylation of arenes and insights into the coordination mode of acidic amide directing groups. *J. Am. Chem. Soc.* **134**, 11948–11951 (2012).

112. Miura, M., Feng, C.-G., Ma, S. & Yu, J.-Q. Pd(II)-catalyzed *ortho*-trifluoromethylation of benzylamines. *Org. Lett.* **15**, 5258–5261 (2013).

113. Chu, L. & Qing, F.-L. Copper-catalyzed direct C–H oxidative trifluoromethylation of heteroarenes. *J. Am. Chem. Soc.* **134**, 1298–1304 (2012).

114. Shang, M. et al. Exceedingly fast copper(II)-promoted *ortho* C–H trifluoromethylation of arenes using $TMSF_3$. *Angew. Chem. Int. Ed.* **53**, 10439–10442 (2014).

115. Liu, Z. et al. Copper-catalyzed remote $C(sp^3)$ – H trifluoromethylation of carboxamides and sulfonamides. *Angew. Chem. Int. Ed.* **58**, 2510–2513 (2019).

116. Xiao, H. et al. Copper-catalyzed late-stage benzylic $C(sp^3)$ – H trifluoromethylation. *Chem* **5**, 940–949 (2019).

117. Sarver, P. J. et al. The merger of decatungstate and copper catalysis to enable aliphatic $C(sp^3)$ – H trifluoromethylation. *Nat. Chem.* **12**, 459–467 (2020).

118. Zheng, Y. & Ma, J.-A. Combination catalysis in enantioselective trifluoromethylation. *Adv. Synth. Catal.* **352**, 2745–2750 (2010).

119. Bizet, V., Basset, T., Ma, J.-A. & Cahard, D. Recent progress in asymmetric fluorination and trifluoromethylation reactions. *Curr. Top. Med. Chem.* **14**, 901–940 (2014).

120. Calvo, R., Comas-Vives, A., Togni, A. & Katayev, D. Taming radical intermediates for the construction of enantioenriched trifluoromethylated quaternary carbon centers. *Angew. Chem. Int. Ed.* **58**, 1447–1452 (2019).

121. Banik, S. M., Medley, J. W. & Jacobsen, E. N. Catalytic, asymmetric difluorination of alkenes to generate difluoromethylated stereocenters. *Science* **353**, 51–54 (2016).

122. Hu, J., Zhang, W. & Wang, F. Selective difluoromethylation and monofluoromethylation reactions. *Chem. Commun.* <https://doi.org/10.1039/B916463D> (2009). **This article is the first comprehensive review on difluoromethylation and monofluoromethylation.**

123. Motherwell, W. B., Tozer, M. J. & Ross, B. C. A convenient method for replacement of the anomeric hydroxy group in carbohydrates by difluoromethyl functionality. *J. Chem. Soc. Chem. Commun.* <https://doi.org/10.1039/C39890001437> (1989).

124. Sap, J. B. I. et al. Organophotoredox hydrodefluorination of trifluoromethylarenes with translational applicability to drug discovery. *J. Am. Chem. Soc.* **142**, 9181–9187 (2020).

125. Belhomme, M.-C., Basset, T., Poisson, T. & Pannecoucke, X. Recent progress toward the introduction of functionalized difluoromethylated building blocks onto $C(sp^3)$ and $C(sp)$ centers. *Chem. Eur. J.* **21**, 12836–12865 (2015).

126. Rong, J., Ni, C. & Hu, J. Metal-catalyzed direct difluoromethylation reactions. *Asian J. Org. Chem.* **6**, 139–152 (2017).

127. Yerien, D. E., Barata-Vallejo, S. & Postigo, A. Difluoromethylation reactions of organic compounds. *Chem. Eur. J.* **23**, 14676–14701 (2017).

128. Levi, N., Amir, D., Gershonov, E. & Zafrani, Y. Recent progress on the synthesis of CF_3H -containing derivatives. *Synthesis* **51**, 4549–4567 (2019).

129. Zhao, Y., Huang, W., Zheng, J. & Hu, J. Efficient and direct nucleophilic difluoromethylation of carbonyl compounds and imines with Me_3SiCF_2H at ambient or low temperature. *Org. Lett.* **13**, 5342–5345 (2011). **This article introduces Me_3SiCF_2H ($TMSF_2H$) as a general and mild direct difluoromethylation reagent.**

130. Endo, Y., Ishii, K. & Mikami, K. Chiral copper-catalyzed enantioselective Michaelis–Meldrum's acid with (difluoromethyl)zinc reagents. *Tetrahedron* **75**, 4099–4103 (2019).

131. Zeng, X. et al. Copper-catalyzed decarboxylative difluoromethylation. *J. Am. Chem. Soc.* **141**, 11398–11403 (2019).

132. Zeng, X. et al. Copper-catalyzed, chloroamide-directed benzylic C–H difluoromethylation. *J. Am. Chem. Soc.* **141**, 19941–19949 (2019).

133. Gu, Y., Lu, C., Gu, Y. & Shen, Q. Ligand-controlled copper-catalyzed highly regioselective difluoromethylation of allylic chlorides/bromides and propargyl bromides. *Chin. J. Chem.* **36**, 55–58 (2018).

134. Song, H., Cheng, R., Min, Q.-Q. & Zhang, X. Decarboxylative and deaminative alkylation of difluoroenoxy silanes via photoredox catalysis: a general method for site-selective synthesis of difluoroalkylated alkanes. *Org. Lett.* **22**, 7747–7751 (2020).

135. Lemos, A., Lemaire, C. & Luxen, A. Progress in difluoroalkylation of organic substrates by visible light photoredox catalysis. *Adv. Synth. Catal.* **361**, 1500–1537 (2019).

136. He, Z., Tan, P., Ni, C. & Hu, J. Fluoroalkylative aryl migration of conjugated *N*-aryl sulfonylated amides using easily accessible sodium di- and monofluoroalkanesulfonates. *Org. Lett.* **17**, 1838–1841 (2015).

This article introduces $\text{HCF}_3\text{SO}_3\text{Na}$ as a practical radical difluoromethylation reagent.

137. Lin, Q.-Y., Ran, Y., Xu, X.-H. & Qing, F.-L. Photoredox-catalyzed bromodifluoromethylation of alkenes with [difluoromethyl]triphenylphosphonium bromide. *Org. Lett.* **18**, 2419–2422 (2016).

138. Zhang, W. et al. Leaving group assisted strategy for photoinduced fluoroalkylations using *N*-hydroxybenzimidoyl chloride esters. *Angew. Chem. Int. Ed.* **58**, 624–627 (2019).

139. Meyer, C. F., Hell, S. M., Misale, A., Trabanco, A. A. & Gouverneur, V. Hydrodifluoromethylation of alkenes with difluoroacetic acid. *Angew. Chem. Int. Ed.* **58**, 8829–8833 (2019).

140. Xie, Q., Zhu, Z., Li, L., Ni, C. & Hu, J. A general protocol for C–H difluoromethylation of carbon acids with TMSCl_2Br . *Angew. Chem. Int. Ed.* **58**, 6405–6410 (2019).

141. Zhu, J. et al. Carbon-selective difluoromethylation of soft carbon nucleophiles with difluoromethylated sulfonyl ylide. *Chin. J. Chem.* **36**, 1069–1074 (2018).

142. Lu, S.-L. et al. Air- and light-stable S-[difluoromethyl] sulfonium salts: C-selective electrophilic difluoromethylation of β -ketoesters and malonates. *Org. Lett.* **20**, 6925–6929 (2018).

143. Duchemin, N., Buccafusca, R., Daumas, M., Ferey, V. & Arseniyadis, S. A unified strategy for the synthesis of difluoromethyl- and vinylfluoride-containing scaffolds. *Org. Lett.* **21**, 8205–8210 (2019).

144. Zeng, X. et al. Copper-catalyzed deaminative difluoromethylation. *Angew. Chem. Int. Ed.* **59**, 16398–16403 (2020).

145. Fier, P. S. & Hartwig, J. F. Copper-mediated difluoromethylation of alkanes and vinyl iodides. *J. Am. Chem. Soc.* **134**, 5524–5527 (2012).

146. Ferguson, D. M., Malapit, C. A., Bour, J. R. & Sanford, M. S. Palladium-catalyzed difluoromethylation of aryl chlorides and bromides with TMSCl_2H . *J. Org. Chem.* **84**, 3735–3740 (2019).

147. Gu, Y., Leng, X. & Shen, Q. Cooperative dual palladium/silver catalyst for direct difluoromethylation of aryl bromides and iodides. *Nat. Commun.* **5**, 5405 (2014).

148. Lu, C. et al. Palladium-catalyzed difluoromethylation of aryl chlorides and triflates and its applications in the preparation of difluoromethylated derivatives of drug/agrochemical molecules. *J. Org. Chem.* **83**, 1077–1083 (2018).

149. Lu, C., Gu, Y., Wu, J., Gu, Y. & Shen, Q. Palladium-catalyzed difluoromethylation of heteroaryl chlorides, bromides and iodides. *Chem. Sci.* **8**, 4848–4852 (2017).

150. Pan, F., Boursalian, G. B. & Ritter, T. Palladium-catalyzed decarbonylative difluoromethylation of acid chlorides at room temperature. *Angew. Chem. Int. Ed.* **57**, 16871–16876 (2018).

151. Xu, L. & Vicić, D. A. Direct difluoromethylation of aryl halides via base metal catalysis at room temperature. *J. Am. Chem. Soc.* **138**, 2536–2539 (2016).

152. Xu, C. et al. Difluoromethylation of (hetero)aryl chlorides with chlorodifluoromethane catalyzed by nickel. *Nat. Commun.* **9**, 1170 (2018).

153. Bacauanu, V. et al. Metallaphotoredox difluoromethylation of aryl bromides. *Angew. Chem. Int. Ed.* **57**, 12543–12548 (2018).

154. Miao, W. et al. Iron-catalyzed difluoromethylation of aryl zincs with difluoromethyl 2-pyridyl sulfone. *J. Am. Chem. Soc.* **140**, 880–883 (2018).

155. Fu, X.-P., Xiao, Y.-L. & Zhang, X. Nickel-catalyzed difluoromethylation of aryl boronic acids with bromodifluoromethane. *Chin. J. Chem.* **36**, 143–146 (2018).

156. Motohashi, H., Kato, M. & Mikami, K. Ligand-less iron-catalyzed aromatic cross-coupling difluoromethylation of Grignard reagents with difluorodimethane. *J. Org. Chem.* **84**, 6483–6490 (2019).

157. Hori, K., Motohashi, H., Saito, D. & Mikami, K. Precatalyst effects on Pd-catalyzed cross-coupling difluoromethylation of aryl boronic acids. *ACS Catal.* **9**, 417–421 (2019).

158. Feng, Z., Min, Q.-Q. & Zhang, X. Access to difluoromethylated arenes by Pd-catalyzed reaction of arylboronic acids with bromodifluoroacetate. *Org. Lett.* **18**, 44–47 (2016).

This article represents a mechanically novel method for metal-catalyzed difluoromethylation.

159. Deng, X.-Y., Lin, J.-H. & Xiao, J.-C. Pd-catalyzed transfer of difluorocarbene. *Org. Lett.* **18**, 4384–4387 (2016).

160. Feng, Z., Min, Q.-Q., Fu, X.-P., An, L. & Zhang, X. Chlorodifluoromethane-triggered formation of difluoromethylated arenes catalyzed by palladium. *Nat. Chem.* **9**, 918–923 (2017).

161. Fu, X.-P. et al. Controllable catalytic difluorocarbene transfer enables access to diversified fluoroalkylated arenes. *Nat. Chem.* **11**, 948–956 (2019).

162. Zhu, S.-Q., Liu, Y.-L., Li, H., Xu, X.-H. & Qing, F.-L. Direct and regioselective C–H oxidative difluoromethylation of heteroarenes. *J. Am. Chem. Soc.* **140**, 11613–11617 (2018).

163. Zhu, S.-Q., Xua, X.-H. & Qing, F.-L. Silver-mediated oxidative C–H difluoromethylation of phenanthridines and 1,10-phenanthroline. *Chem. Commun.* **53**, 11484–11487 (2017).

164. Fujiwara, Y. et al. A new reagent for direct difluoromethylation. *J. Am. Chem. Soc.* **134**, 1494–1497 (2012).

This article develops a practical method for the direct introduction of a difluoromethyl group into organic molecules.

165. Dai, P., Yu, X., Teng, P., Zhang, W.-H. & Deng, C. Visible-light and oxygen-promoted direct Csp^2H radical difluoromethylation of coumarins and antifungal activities. *Org. Lett.* **20**, 6901–6905 (2018).

166. Zhang, W. et al. Direct C–H difluoromethylation of heterocycles via organic photoredox catalysis. *Nat. Commun.* **11**, 638 (2020).

167. Sakamoto, R., Kashiwagi, H. & Maruoka, K. The direct C–H difluoromethylation of heteroarenes based on the photolysis of hypervalent iodine(III) reagents that contain difluoroacetoxy ligands. *Org. Lett.* **19**, 5126–5129 (2017).

168. Tung, T. T., Christensen, S. B. & Nielsen, J. Difluoroacetic acid as a new reagent for direct C–H difluoromethylation of heteroaromatic compounds. *Chem. Eur. J.* **23**, 18125–18128 (2017).

169. Rubinski, M. A., Lopez, S. E. & Dolbier, W. R. Jr. Direct access to 2-difluoromethyl indoles via photoredox catalysis. *J. Fluor. Chem.* **224**, 80–88 (2019).

170. Su, Y.-M. et al. Visible light-mediated C–H difluoromethylation of electron-rich heteroarenes. *Org. Lett.* **16**, 2958–2961 (2014).

171. McAtee, R. C., Beatty, J. W., McAtee, C. C. & Stephenson, C. R. J. Radical chlorodifluoromethylation: providing a motif for (hetero)arene diversification. *Org. Lett.* **20**, 3491–3495 (2018).

172. Ye, F. et al. Aryl sulfonium salts for site-selective late-stage trifluoromethylation. *Angew. Chem. Int. Ed.* **58**, 14615–14619 (2019).

173. Zhao, H., Herbert, S., Kinzel, T., Zhang, W. & Shen, Q. Two ligands transfer from Ag to Pd: en route to (SIPr)Pd(CF_3H) X and its application in one-pot C–H borylation/difluoromethylation. *J. Org. Chem.* **85**, 3596–3604 (2020).

174. Ni, C. & Hu, J. Recent advances in the synthetic application of difluorocarbene. *Synthesis* **46**, 842–863 (2014).

175. Levchenko, K. et al. Copper-catalyzed O-difluoromethylation of functionalized aliphatic alcohols: access to complex organic molecules with an OCF_3H group. *J. Org. Chem.* **81**, 5803–5813 (2016).

176. Xie, Q. et al. Efficient difluoromethylation of alcohols using TMSCl_2Br as a unique and practical difluorocarbene reagent under mild conditions. *Angew. Chem. Int. Ed.* **56**, 3206–3210 (2017).

177. Xiao, X. et al. Recent advances in difluoromethylthiolation. *Synthesis* **52**, 197–207 (2020).

This article includes important references on difluoromethylthiolation.

178. Reichel, M. & Karaghiosoff, K. Reagents for selective fluoromethylation-A challenge in organofluorine chemistry. *Angew. Chem. Int. Ed.* **59**, 12268–12281 (2020).

This article is the most comprehensive review on monofluoromethylation.

179. Harry Szmant, H. & Dudek, J. Relative chloromethylation rates of some aromatic compounds. *J. Am. Chem. Soc.* **71**, 3763–3765 (1949).

180. Meanwell, M. & Britton, R. Synthesis of heterobenzylic fluorides. *Synthesis* **50**, 1228–1236 (2018).

181. Parisi, G. et al. Exploiting a “beast” in carbene chemistry: development of a straightforward direct nucleophilic fluoromethylation strategy. *J. Am. Chem. Soc.* **139**, 13648–13651 (2017).

182. Shen, X., Ni, C. & Hu, J. Highly stereoselective and one-pot synthesis of tetra-substituted monofluoroalkenes with aldehydes and fluorobis(phenylsulfonyl)methane. *Chin. J. Chem.* **31**, 878–884 (2013).

183. Koizumi, T., Hagi, T., Horie, Y. & Takeuchi, Y. Diethyl 1-fluoro-1-phenylsulfonylmethanephosphonate, a versatile agent for the preparation of monofluorinated building blocks. *Chem. Pharm. Bull.* **35**, 3959–3962 (1987).

184. Zhu, L., Ni, C., Zhao, Y. & Hu, J. 1-*tert*-Butyl-1*H*-tetrazol-5-yl fluoromethyl sulfone ($\text{TBTSO}_2\text{CH}_2\text{F}$): a versatile fluoromethylidene synthon and its use in the synthesis of monofluorinated alkenes via Julia-Kocienski olefination. *Tetrahedron* **66**, 5089–5100 (2010).

185. Shen, X., Zhou, M., Ni, C., Zhang, W. & Hu, J. Direct monofluoromethylation of O-, S-, N-, and P-nucleophiles with $\text{PhSO}(\text{NTs})\text{CH}_2\text{F}$: the accelerating effect of α -fluorine substitution. *Chem. Sci.* **5**, 117–122 (2014).

186. Rong, J. et al. Radical fluoroalkylation of isocyanides with fluorinated sulfones by visible-light photoredox catalysis. *Angew. Chem. Int. Ed.* **55**, 2743–2747 (2016).

187. Tang, X. J. & Dolbier, W. R. Efficient Cu-catalyzed atom transfer radical addition reactions of fluoroalkylsulfonyl chlorides with electron-deficient alkenes induced by visible light. *Angew. Chem. Int. Ed.* **54**, 4246–4249 (2015).

188. Cao, J. J., Wang, X., Wang, S. Y. & Ji, S. J. Mn(III)-mediated reactions of 2-isocyanobiphenyl with 1,3-dicarbonyl compounds: efficient synthesis of 6-alkylated and 6-monofluoro-alkylated phenanthridines. *Chem. Commun.* **50**, 12892–12895 (2014).

189. Olah, G. A. & Pavlath, A. The investigation of fluoromethylation. *Acta Chim. Acad. Sci. Hung.* **3**, 425 (1953).

190. Olah, G. A. & Pavlath, A. The preparation of fluoromethanol. *Acta Chim. Acad. Sci. Hung.* **3**, 203–207 (1953).

191. Orr, J. C., Edwards, J. & Bowers, A. (Syntex Corp.) 2-Halo methyl derivatives of the androstane series. US Patent 3,080,395 (1963).

192. Ding, T. et al. Highly carbon-selective monofluoromethylation of β -ketoesters with fluoromethyl iodide. *Org. Lett.* **21**, 6025–6028 (2019).

193. Prakash, G. K. S., Ledneczki, I., Chacko, S. & Olah, G. A. Direct electrophilic monofluoromethylation. *Org. Lett.* **10**, 557–560 (2008).

194. Liu, Y., Lu, L. & Shen, Q. Monofluoromethyl-substituted sulfonium ylides: electrophilic monofluoromethylating reagents with broad substrate scopes. *Angew. Chem. Int. Ed.* **56**, 9930–9934 (2017).

195. Nomura, Y., Tokunaga, E. & Shibata, N. Inherent oxygen preference in enolate monofluoromethylation and a synthetic entry to monofluoromethyl ethers. *Angew. Chem. Int. Ed.* **50**, 1885–1889 (2011).

196. Yang, V.-D. et al. Cation versus radical: studies on the C/O regioselectivity in electrophilic trifluoromethylations of β -ketoesters. *ChemistryOpen* **1**, 221–226 (2012).

197. Yang, V. D., Wang, X., Tsuzuki, S., Tokunaga, E. & Shibata, N. Studies on the C/O-regioselectivity in electrophilic fluoromethylations of β -ketoesters based on thermodynamics by ab initio calculations. *Bull. Kor. Chem. Soc.* **35**, 1851–1854 (2014).

198. Raymond, J. I. & Andrews, L. Matrix reactions of fluorohalomethanes with alkali metals: infrared spectrum and bonding in the monofluoromethyl radical. *J. Phys. Chem.* **75**, 3235–3242 (1971).

199. Fujiwara, Y. et al. Practical and innate carbon–hydrogen functionalization of heterocycles. *Nature* **492**, 95–99 (2012).

200. Huang, Q. & Zard, S. Z. Inexpensive radical methylation and related alkylations of heteroarenes. *Org. Lett.* **20**, 1413–1416 (2018).

201. Ruan, Z. et al. Ruthenium(II)-catalyzed meta-C–H mono- and difluoromethylations by phosphine/carboxylate cooperation. *Angew. Chem. Int. Ed.* **56**, 2045–2049 (2017).

202. Li, Z. Y. et al. Ruthenium-catalyzed *meta*-selective C–H mono- and difluoromethylation of arenes through *ortho*-metalation strategy. *Chem. Eur. J.* **23**, 3285–3290 (2017).

203. Reutrakul, V. & Rukachaisirikul, V. Fluoromethyl phenyl sulfoxide: highly convenient syntheses of vinyl fluorides and fluoromethylketones. *Tetrahedron Lett.* **24**, 725–728 (1983).

204. Zhao, Y. et al. Copper-catalyzed debenzylation monofluoromethylation of aryl iodides assisted by the removable (2-pyridyl)sulfonyl group. *ACS Catal.* **3**, 631–634 (2013).

205. Peters, D. & Miethchen, R. Symptoms and treatment of hydrogen fluoride injuries. *J. Fluor. Chem.* **79**, 161–165 (1996).

206. Inoue, M., Sumii, Y. & Shibata, N. Contribution of organofluorine compounds to pharmaceuticals. *ACS Omega* **5**, 10633–10640 (2020).

This article comprehensively summarizes the fluorinated pharmaceuticals on the market.

207. Halperin, S. D., Fan, H., Chang, S., Martin, R. E. & Britton, R. A convenient photocatalytic fluorination of unactivated C–H bonds. *Angew. Chem. Int. Ed.* **53**, 4690–4693 (2014).

208. Yale, H. L. The trifluoromethyl group in medical chemistry. *J. Med. Chem.* **1**, 121–133 (1958).

209. Meanwell, N. A. Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. *J. Med. Chem.* **61**, 5822–5880 (2018).

210. Estrada, A. A. et al. Discovery of highly potent, selective, and brain-penetrable leucine-rich repeat kinase 2 (LRRK2) small molecule inhibitors. *J. Med. Chem.* **55**, 9416–9433 (2012).

211. Jurica, E. A. et al. Discovery of pyrrolidine-containing GPR40 agonists: stereochemistry effects a change in binding mode. *J. Med. Chem.* **60**, 1417–1431 (2017).

212. Trump, L. et al. Late-stage ¹⁸F-difluoromethyl labeling of *N*-heteroaromatics with high molar activity for PET imaging. *Angew. Chem. Int. Ed.* **58**, 13149–13154 (2019).

213. Kuttruff, C. A., Haile, M., Kraml, J. & Tautermann, C. S. Late-stage functionalization of drug-like molecules using Diversitates. *ChemMedChem* **13**, 983–987 (2018).

214. Noisier, A. F. M. et al. Late-stage functionalization of histidine in unprotected peptides. *Angew. Chem. Int. Ed.* **58**, 19096–19102 (2019).

215. Jiang, J. et al. Late-stage difluoromethylation leading to a self-immobilizing fluorogenic probe for the visualization of enzyme activities in live cells. *Chem. Commun.* **55**, 15000–15003 (2019).

216. Smith, J. M., Dixon, J. A., deGruyter, J. N. & Baran, P. S. Alkyl sulfonates: radical precursors enabling drug discovery. *J. Med. Chem.* **62**, 2256–2264 (2019).

217. Campbell, M. G. et al. Bridging the gaps in ¹⁸F PET tracer development. *Nat. Chem.* **9**, 1–3 (2017).

218. Yuan, Z. et al. Electrostatic effects accelerate decatungstate-catalyzed C–H fluorination using [¹⁸F]- and [¹⁸F]NFSI in small molecules and peptide mimics. *ACS Catal.* **9**, 8276–8284 (2019).

219. Huibin, M. et al. A broadly applicable [¹⁸F]trifluoromethylation of aryl and heteroaryl iodides for PET imaging. *Nat. Chem.* **5**, 941–944 (2013).

220. Ivashkin, P. et al. CuCF₃: a [¹⁸F]trifluoromethylating agent for arylboronic acids and aryl iodides. *Chem. Eur. J.* **20**, 9514–9518 (2014).

221. Vanderborn, D. et al. A universal procedure for the [¹⁸F]trifluoromethylation of aryl iodides and aryl boronic acids with highly improved specific activity. *Angew. Chem. Int. Ed.* **53**, 11046–11050 (2014).

222. Yang, B. Y., Telu, S., Haskali, M. B., Morse, C. L. & Pike, V. W. A gas phase route to [¹⁸F]fluoroform with limited molar activity dilution. *Sci. Rep.* **9**, 14835 (2019).

223. Ashworth, S. et al. ¹⁸F-Trifluoromethanesulfonate enables direct C–H ¹⁸F-trifluoromethylation of native aromatic residues in peptides. *J. Am. Chem. Soc.* **142**, 1180–1185 (2020).

224. Zheng, L. & Berridge, M. S. Synthesis of [¹⁸F]fluoromethyl iodide, a synthetic precursor for fluoromethylation of radiopharmaceuticals. *Appl. Radiat. Isot.* **52**, 55–61 (2000).

225. Iwata, R. et al. [¹⁸F]Fluoromethyl triflate, a novel and reactive [¹⁸F]fluoromethylating agent: preparation and application to the on-column preparation of [¹⁸F]fluorochooline. *Appl. Radiat. Isot.* **57**, 347–352 (2002).

226. Degrado, T. R. et al. Synthesis and evaluation of ¹⁸F-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. *Cancer Res.* **61**, 110–117 (2001).

227. Doi, H., Goto, M. & Suzuki, M. Pd⁰-mediated rapid C–[¹⁸F]fluoromethylation by the cross-coupling reaction of a [¹⁸F]fluoromethyl halide with an arylboronic acid ester: novel method for the synthesis of a ¹⁸F-labeled molecular probe for positron emission tomography. *Bull. Chem. Soc. Jpn.* **85**, 1233–1238 (2012).

228. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among US FDA approved pharmaceuticals. *J. Med. Chem.* **57**, 10257–10274 (2014).

229. Ichishi, N. et al. Protecting group free radical C–H trifluoromethylation of peptides. *Chem. Sci.* **9**, 4168–4175 (2018).

230. Imiolek, M. et al. Selective radical trifluoromethylation of native residues in proteins. *J. Am. Chem. Soc.* **140**, 1568–1571 (2018).

231. O’Neill, B. T. et al. Design and synthesis of clinical candidate PF-06751979: a potent, brain penetrant, β -site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitor lacking hypopigmentation. *J. Med. Chem.* **61**, 4476–4504 (2018).

232. Greszler, S. N., Shelat, B. & Voight, E. A. Enabling synthesis of ABBV-2222, a CFTR corrector for the treatment of cystic fibrosis. *Org. Lett.* **21**, 5725–5727 (2019).

233. Kubota, S. Manufacturing method of pyrazole derivative and intermediate products thereof. Patent JP2017/206453A (2017).

234. Fujiwara, T. & O’Hagan, D. Successful fluorine-containing herbicide agrochemicals. *J. Fluor. Chem.* **167**, 16–29 (2014).

235. Okui, S. et al. Pyrazol derivatives, pest control agent comprising the same as active ingredient, and process for producing the same. US Patent 7371768 B2 (2008).

236. Sharma, R. & Aboagye, E. Development of radiotracers for oncology — the interface with pharmacology. *Br. J. Pharmacol.* **163**, 1565–1585 (2011).

237. Everaert, H. et al. Optimal dose of ¹⁸F-FDG required for whole-body PET using an LSO PET camera. *Eur. J. Nucl. Med. Mol. Imaging* **30**, 1615–1619 (2003).

238. World Health Organization. Essential medicines and health products. *World Health Organization* https://www.who.int/medicines/areas/quality_safety/quality_assurance/production/en/ (2021).

239. Dolbier, W. R. Jr. *Guide to Fluorine NMR for Organic Chemists* 2nd ed. (Wiley, 2016).

240. Halperin, S. D. et al. Development of a direct photocatalytic C–H fluorination for the preparative synthesis of odanacatib. *Org. Lett.* **17**, 5200–5203 (2015).

241. Nobile, E., Castanheiro, T. & Besset, T. Radical-promoted distal C–H functionalization of C(sp³) centers with fluorinated moieties. *Angew. Chem. Int. Ed.* <https://doi.org/10.1002/anie.202009995> (2021).

242. Zhang, F.-G. et al. Remote fluorination and fluoroalkyl[thiol]ation reactions. *Chem. Eur. J.* **26**, 15378–15396 (2021).

243. Josephson, B. et al. Light-driven post-translational installation of reactive protein side chains. *Nature* **585**, 530–537 (2020).

Acknowledgements

This work is partially supported by the National Key Research and Development Program of China (2016YFB0101200), the National Natural Science Foundation of China (21632009, 21421002, 21672242, 21971252 and 21991122), Key Programs of the Chinese Academy of Sciences (KGZD-EW-T08), the Key Research Program of Frontier Sciences of CAS (QYZDJ-SSW-SLH049), Shanghai Science and Technology Program (18JC1410601) and the Youth Innovation Promotion Association CAS (2019256). R.B. acknowledges support from a Natural Sciences and Engineering Research Council (NSERC) of Canada Discovery Grant (2019-06368) and M.M. was supported by a NSERC CGSM award. The authors also thank the European Research Council (grant agreements 832994 and 789553) for financial support.

Author contributions

Introduction (J.H.); Experimentation, Applications, Reproducibility and data deposition, Limitations and optimizations: Fluorination (G.P. and V.G.), Trifluoromethylation (J.-H.L. and J.-C.X.), Difluoromethylation (C.N. and J.H.), Monofluoromethylation (M.M. and R.B.); Outlook (J.H.); Overview of Primer (all authors).

Competing interests

The authors declare no competing interests.

Peer review information

Nature Reviews Methods Primers thanks L. Hunter, N. Shibata and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

The online version contains supplementary material available at <https://doi.org/10.1038/s43586-021-00042-1>.

© Springer Nature Limited 2021