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A chloride ion-catalyzed generation of difluorocarbene from a
relatively non-toxic and inexpensive precursor, Me;SiCF,Cl (1),
under mild and neutral conditions leads to an efficient
preparation of gem-difluorocyclopropenes and difluorocyclo-
propanes through [2 + 1] cycloaddition reactions with alkynes
and alkenes, respectively.

A selective introduction of fluorine atom(s) or fluorinated
moieties into organic molecules often leads to a profound change
in their physical, chemical and biological activities.'> Over the
past three decades, considerable efforts have been devoted to the
development of efficient and practically useful fluorination and
fluoroalkylation methods,> among which the difluoromethyl-
enation reactions with difluorocarbene or difluorocarbenoid
species have drawn much attention.'*** Difluorocarbene
(:CF,, with a singlet ground state) is the most stable
dihalocarbene owing to the interaction of the lone pairs of its
fluorine substituents with the carbene center.® Typical synthetic
applications of difluorocarbene include: (a) homocoupling at
very high temperature to produce tetrafluoroecthylene (TFE),
an important industrial process;’ (b) reaction with oxygen-,
nitrogen-, sulfur-, phosphorous- and carbon-nucleophiles to
give difluoromethylated products; and (c) undergoing [2 + 1]
cycloaddition with alkynes or alkenes.> While the first two
types of reactions can be achieved by using CHCIF,,
CICF,>COONa, or other difluorocarbene reagents,s“6 the third
class of reaction is generally more difficult in terms of substrate
scope and efficiency.® Sodium halodifluoroacetate,” PnHgCF5
(Seyferth reagent)fv’k’8 FSO,CF,CO,SiMes, ¥ Ph3P/CF2Br29
and Zn/CF,Br,!® are among the most commonly used
reagents for this [2 + 1] cycloaddition reaction. However,
these reagents suffer from disadvantages of high toxicity, harsh
reaction conditions and slow addition techniques, and/or
low product yields. Herein, we report a remarkable chloride

“Key Laboratory of Organofluorine Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences,
345 Ling-Ling Road, Shanghai 200032, China.
E-mail: jinbohu@sioc.ac.cn
b KAUST Catalysis Center and Division of Chemical and Life
Sciences and Engineering, King Abdullah University of Science and
Technology, Thuwal 23955-6900, Saudi Arabia.
E-mail: hkw@kaust.edu.sa
1 Electronic supplementary information (ESI) available: Experimental
procedures, analytical data for all isolated compounds, Cartesian
coordinates and energies of all calculated species, imaginary frequencies
of transition states. See DOI: 10.1039/c0cc04548a

ion-catalyzed generation of difluorocarbene from Me;SiCF,Cl
and its efficient cycloaddition to alkynes and alkenes.

We have shown that PhACOCF,Cl,* PhSO,CF,CL* and
PhSO(NTs)CF,H*" can act as difluorocarbene reagents under
basic conditions for difluoromethylation of O-, N-, S-, or
C-nucleophiles. However, these reagents were found to be
incapable of undergoing [2 + 1] cycloaddition reactions with
alkynes or alkenes. By realizing that the key to a successful
difluorocarbene reagent for a [2 + 1] reaction requires the
generation of :CF, species under non-basic conditions and at
sufficiently high temperature,’”!! we became interested in
developing Me;SiCF,Cl (1) as a new, relatively nontoxic and
convenient difluorocarbene reagent. 1 was previously used as a
nucleophilic chlorodifluoromethylating agent for carbonyl
compounds,'? but its application as a difluorocarbene reagent
has never been reported.

At the onset of our studies, we examined the reactions
between 1 and alkynes, by using phenylacetylene (4a) as a

Table 1 Survey of reaction conditions

L R F
_ . initiator
Ph—=+ Me;SICFX solvent, temp, 4 h /A
4a 1(X=Cl) Ph 5a
. 2 (X = Br)
(1.0 equiv) 3(X=F)
Me;sSiCF,X Initiator Temp/ Yield
Entry®  (equiv.)’ Solvent  (mol%)“ °C (%)?
1 1(1.5) THF or  None 110 0¢
toluene )
2 1(1.5) THF n-BuyNF (110) 110 o
3 1(1.5) THF n-BuyNF (2) 110 39
4 1(1.5) THF n-BuyNCl (2) 110 39
5 1(1.5) THF NacCl 110 0¢
6 1(1.5) CH;CN  n-BuyNCl (2) 110 71
7 1(1.5) Toluene  n-BuyNCI (2) 110 79
8 1(1.5) Toluene n-BuyNCl (2) 110 63
9 2 (1.5) Toluene  n-BuyNCI (2) 110 67
10 3(1.5) Toluene  n-BuyNCl (2) 110 0¢
11 1(2.0) Toluene  n-BuyNCl (2) 110 91
12 1(2.0) Toluene  n-BuyyNF (2) 110 82
13 1(2.0) Toluene  n-BuyNF (110) 110 o
14 1(2.0) Toluene  n-BuyNCl (2) 25 0¢
15 1(2.0) Toluene  n-BuyNCl (2) 80 53¢

7110 °C for 4 h. ? Relative to 4a. ¢ Relative to Me;SiCF,>X. ¢ Deter-
mined by 'F NMR using PhCF; as an internal standard. ¢ The
Me;SiCF,X reagent was recovered. ' CF;H and Me;SiF were detected
as the major products. ¢ 1 was partly recovered.
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model substrate (Table 1). It was found that the reaction between
1 and 4a could not proceed in the absence of a Lewis base
initiator (entry 1). When an excess amount of n-Buy;NF was
added to the THF solution of 1 and 4a, a facile reaction took
place resulting in the formation of CF;H and Me;SiF as the
major products,'”® but no 5a was formed (entry 2). When the
amount of n-BuyNF was reduced to 2 mol%, the formation of 5a
in 39% yield was observed (entry 3). It was most surprising that,
even a catalytic amount (2 mol%) of n-BuyNCl can initiate this
reaction (entry 4). Sodium chloride (NaCl) was incapable of
initiating the reaction probably owing to its insolubility in THF
(entry 5), while n-BuyNBr (2 mol%) was also able to initiate the
reaction (entry 8). Toluene was found to be a better solvent than
THF and acetonitrile (entries 4, 6 and 7). Interestingly, it was
found that Me;SiCF,Br (2) could also serve as a difluoromethyl-
enation reagent with slightly lower yield, while Me;SiCF; was
found to be inert under the same reaction conditions (entries 9
and 10). Furthermore, when toluene was used as a solvent, a
catalytic amount of n-BuyNF (2 mol%) could efficiently initiate
the reaction (entry 12), while an overdose of n-BuyNF
(110 mol%) led to a complete failure (entry 13). To examine
the temperature effect, we found that n-BuyNCI could not initiate
the reaction at 25 °C (entry 14), and only a moderate yield of 5a
(53%) was observed when the reaction was performed at 80 °C
(entry 15). The optimal yield of 5a (91%) was obtained when the
reaction was performed at 110 °C in toluene with a reactant ratio
4a :1:n-BuyNCl = 1.0 : 2.0 : 0.04 (entry 11).

As shown in Table 2, with the use of a catalytic quantity of
n-BuyNClI (2 mol%), 1 was found to react with a variety of
structurally diverse alkynes. This method was amenable to
both alkyl- and aryl-substituted alkynes, and in most cases,
excellent yields were obtained. It should be mentioned that in
the case of tetradec-5-yne (4f), the reaction at 110 °C resulted
in a complete decomposition of product 5f; however, when we
performed the reaction at 80 °C for 4 h, product 5f was
obtained in almost quantitative yield (Table 2).

Encouraged by the above results, we further extended our
method to alkenes. After a quick optimization of reaction

Table 2 [2 + 1] Cycloaddition between 1 and alkynes 4
R F
’ > n-BuyNCI (2 mol%)
R'—=—=—R? + Me;SiCF,(l ——MM
toluene, 110°C, 4 h
4 1 Ry R,
(1.0 equiv) (2.0 equiv) 5
e e
5a (91%)° 5b (81%)? 5¢c (84%)? 5d (92%)°
- - ﬁ AY
(93%)° 5f (99%)>¢  5g (93%)b 5h (91%)b
5i (89%)° (97%)” 5k (94%

“ Determined by '"F NMR using PhCF; as an internal standard.
b Isolated yield. ¢ The reaction temperature was 80 °C (rather than 110 °C).

Table 3 [2 + 1] Cycloaddition between 1 and alkynes 6

RLR Bu,NCI (2 mol% N
n-| m
Y=+ Messicr,cl LuNACIY, g1 /A\_ge
Re R THF, 110°C, 4 h R
6 1 7
7a (80%)”0 (75%)3%f 9%)“' 7d (99%)ad
Te (82%)2%f f (99%)29 79 (70%)29

OCF,H F
m ﬁ>v©i - e

(56%)2¢ 7i (53%)399 7i (7T1%)4

“ Jsolated yield. ® Determined by '°F NMR. ¢ 2.0 equiv. of 1 was used
(relative to 6). ¥ 3.0 equiv. of 1 was used. € 4.0 equiv. of 1 was used.  Low
yield due to volatility of the product. *Toluene was used as the solvent.

conditions, we chose THF as a solvent and used 3 equiv. of 1
for most alkenes 6 (Table 3). It was found that the reaction not
only worked for electron-rich alkenes (see 7a—d), but also
worked well with many mono-substituted alkenes (see 7e—j).
Among the mono-substituted alkenes, aryl-substituted alkenes
generally gave higher yields (7e and 7f) than alkyl-substituted
ones (7g—j). It is remarkable that for the alkene bearing a
nucleophilic phenoxyl group, difluorocyclopropane 7h was
also obtained in useful yield (56%).

Density functional theory (DFT) calculations were conducted
to evaluate plausible pathways and to examine the role of CI™ and
the fate of 1 (Fig. 1).!* The process of single electron transfer from
Cl™ to 1 to yield CI* and 1°~ radical anion was ruled out due to a
large calculated AG of 130.5 kcal mol~'. When the solvent effect is
considered using the PCM method, unlike in the gas phase, a
stationary point for a pentacovalent silicate anion
(CI-MesSi-CF,Cl7) could not be located, but an Sy2-like
transition state (10) was identified instead with an activation
free energy of 26.2 kcal mol ™. Transition state 10 subsequently
led to the formation of MesSiCl and the chlorodifluoro-
methyl anion 11."> Anion 11 might react with 6a in two pathways:
(A) elimination of a CI~ anion to form the difluorocarbene

Me;SiCF,Cl = +Cl-

1305 46.9 F Ok 1-*
a5 =T v
' ;
. CFZCI <
35
RF *
5 s 2
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—~ .5 i
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Fig. 1 Energy profile of possible reaction pathways.
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intermediate for a [2 + 1] cycloaddition reaction with 6a as shown
in blue, and (B) direct addition to 6a followed by the production
of 7a and CI™ without the participation of the difluorocarbene
intermediate as shown in red. In pathway A, the formation
of :CF, from anion 11 was found to proceed without an energy
barrier. This is consistent with the observation of an elongated
C-Cl bond of 2.560 A in 11, indicative of a weak interaction and
the tendency to lose a Cl™. Difluorocarbene could then add to 6a
with an overall activation free energy of 31.7 kcal mol™' to
generate product 7a, a process recently well documented by
Nagase er al.'® While this activation free energy may seem
excessive, it is indeed in good agreement with those reported in
literature'® and consistent with the required reaction temperatures
in our experiments. In comparison, the direct addition pathway
B resulted in a much higher overall energy barrier of
46.9 keal mol™!, and is thus unfavorable. Upon addition of F~
to 1, in contrast to Cl~, a pentacovalent fluorosilicate anion (12)
can be formed with a AG of —5.1 kcal mol™!, presumably because
the Si—F bond (129 kcal mol™") is much stronger than the Si-Cl
bond (109 kcal mol™')."” Intermediate 12 can then undergo the
elimination of anion 11 via transition state 13 with a small energy
barrier of 0.3 kecal mol™'. In the presence of excess F~,: CF,
generated by the elimination of CI™ from 11 will be quenched by
F~ to afford CF5~, which will eventually be protonated to give
CF;H (shown in purple, Fig. 1).

Based on the above results, we propose that a chloride
ion-catalyzed generation of difluorocarbene from 1 plays an
important role for the success of the cycloaddition reaction
(Scheme 1). A catalytic amount of soluble chloride ion source
CI™ could react with 1 to release Me;SiCl and chlorodifluoro-
methyl anion 11,'> which should readily undergo a-elimination
of a chloride ion to give a singlet difluorocarbene species, reacting
with alkynes or alkenes via a [2 + 1] cyclization process to give
the corresponding products. The resulting chloride ion can enter
into the catalytic cycle to activate another Me;SiCF,Cl molecule.

In conclusion, we have demonstrated a novel methodology for
the chloride ion-catalyzed generation of difluorocarbene from a
relatively nontoxic precursor, Me;SiCF,Cl, under mild and
neutral conditions to prepare gem-difluorocyclopropenes and
difluorocyclopropanes through [2 + 1] cycloaddition reactions
with alkynes and alkenes, respectively. The crucial role of Cl™ is
identified to only allow the formation of difluorocarbene at a
moderately elevated temperature at which the [2 + 1] cyclo-
addition reactions can proceed. The extension of the scope of
potential applications using this novel approach is currently
underway in our laboratories and will be reported in due course.
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20825209, 20832008) to J.H. and by a KAUST baseline
funding to K.-W.H.

Me;SIiCF,Cl (1)

----- CFZCI L
----- 10
F/‘

Me;SiCl

Scheme 1 Proposed reaction mechanism.
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